• Title/Summary/Keyword: fingerprinting positioning

Search Result 63, Processing Time 0.026 seconds

FingerPrint building method using Splite-tree based on Indoor Environment (실내 환경에서 WLAN 기반의 Splite-tree를 이용한 가상의 핑거 프린트 구축 기법)

  • Shin, Soong-Sun;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.173-182
    • /
    • 2012
  • A recent advance in smart phones is increasing utilization of location information. Existing positioning system was using GPS location for positioning. However, the GPS cannot be used indoors, if GPS location has an incorrectly problem. In order to solve indoor positioning problems of indoor location-based positioning techniques have been investigated. There are a variety of techniques based on indoor positioning techniques like as RFID, UWB, WLAN, etc. But WLAN location positioning techniques take advantage the bond in real life. WLAN indoor positioning techniques have a two kind of method that is centroid and fingerprint method. Among them, the fingerprint technique is commonly used because of the high accuracy. In order to use fingerprinting techniques make a WLAN signal map building that is need to lot of resource. In this paper, we try to solve this problem in an Indoor environment for WLAN-based fingerprint of a virtual building technique, which is proposed. Proposed technique is classified Cell environment in existed Indoor environment, all of fingerprint points are shown virtual grid map in each Cell. Its method can make fingerprint grid map very quickly using estimate virtual signal value. Also built signal value can take different value depending of the real estimate value. To solve this problem using a calibration technique for the Splite-tree is proposed. Through calibration technique that improves the accuracy for short period of time. It also is improved overall accuracy using predicted value of around position in cell.

Techniques to Improve Accuracy of Fingerprinting-Positioning-Based Kalman Filter Tracking (지문방식 측위 기반 칼만필터 추적의 정확성 제고 방법)

  • Yim, Jae-Geol;Jeong, Seung-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.313-318
    • /
    • 2007
  • 위치기반서비스에서 사용자의 정확한 위치가 요구되면서 측위와 추적에 대한 연구가 활발히 진행되고 있다. 측위 방법에는 위성기반 방법[1, 2], 로컬네트워크기반 방법[3-6], 센서기반 방법[1, 7, 8, 9]등이 있다. 본 연구에서는 로컬네트워크 중 WLAN (Wireless Local Area Network) 환경의 옥내에서 사용자의 위치를 추적하는 기존의 방법의 정확성을 제고하는 방안을 제안한다. 제안하는 방법은 WLAN 환경에서 RSS를 측정하여 K-NN방식으로 현재 위치를 판단한 다음, 칼만필터를 사용하여 사용자의 위치와 이동경로를 예측한다는 점에서 기존의 방법과 비슷하다. 제안하는 방법의 특징은 도면 정보를 이용하는 것이다. 제안하는 방법은 도면정보로부터 갈림길 영역을 파악하고, 갈림길 영역에서는 측정치에 가중치를 두고 갈림길이 아닌 지역에서는 시스템 모델에 가중치를 두도록 파라메타의 값을 조절한다. 제안하는 방법의 효율성을 실험적으로 증명하기 위한 실험 결과와 분석 내용도 제시한다.

  • PDF

KNN / ANN Hybrid algorithm Using indoor positioning Method (KNN/ANN Hybrid 알고리즘을 활용한 실내위치 측위 기법)

  • Kim, Beom-mu;Thapa, Prakash;Paudel, Prebesh;Jeong, Min-A;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1205-1207
    • /
    • 2015
  • Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은 k개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 ANN 군집화를 적용한 KNN과 ANN을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 ANN에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/ANN 알고리즘이 KNN 알고리즘보다 성능이 우수하다.

Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model (순환신경망을 이용한 자기장 기반 실내측위시스템)

  • Bae, Han Jun;Choi, Lynn;Park, Byung Joon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2018
  • Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about $94m{\times}26$ dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.

Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE (WiFi와 BLE 를 이용한 Log-Distance Path Loss Model 기반 Fingerprint Radio map 알고리즘)

  • Seong, Ju-Hyeon;Gwun, Teak-Gu;Lee, Seung-Hee;Kim, Jeong-Woo;Seo, Dong-hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • The fingerprint, which is one of the methods of indoor localization using WiFi, has been frequently studied because of its ability to be implemented via wireless access points. This method has low positioning resolution and high computational complexity compared to other methods, caused by its dependence of reference points in the radio map. In order to compensate for these problems, this paper presents a radio map designed algorithm based on the log-distance path loss model fusing a WiFi and BLE fingerprint. The proposed algorithm designs a radio map with variable values using the log-distance path loss model and reduces distance errors using a median filter. The experimental results of the proposed algorithm, compared with existing fingerprinting methods, show that the accuracy of positioning improved by from 2.747 m to 2.112 m, and the computational complexity reduced by a minimum of 33% according to the access points.

Vector Calibration for Geomagnetic Field Based Indoor Localization (지자기 기반 실내 위치 추정을 위한 지자기 벡터 보정법)

  • Son, Won Joon;Choi, Lynn
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.25-30
    • /
    • 2019
  • Magnetic sensors have the disadvantage that their vector values differ depending on the direction. In this paper, we propose a magnetic vector calibration method for geomagnetic-based indoor localization estimates. The fingerprinting technique used in geomagnetic-based indoor localization the position by matching the magnetic field map and the magnetic sensor value. However, since the moving direction of the current user may be different from the moving direction of the person who creates the magnetic field map at the collection time, the sampled magnetic vector may have different values from the vector values recorded in the field map. This may substantially lower the positioning accuracy. To avoid this problem, the existing studies use only the magnitude of magnetic vector, but this reduces the uniqueness of the fingerprint, which may also degrade the positioning accuracy. In this paper we propose a vector calibration algorithm which can adjust the sampled magnetic vector values to the vector direction of the magnetic field map by using the parametric equation of a circle. This can minimize the inaccuracy caused by the direction mismatch.

Hybrid SVM/ANN Algorithm for Efficient Indoor Positioning Determination in WLAN Environment (WLAN 환경에서 효율적인 실내측위 결정을 위한 혼합 SVM/ANN 알고리즘)

  • Kwon, Yong-Man;Lee, Jang-Jae
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.238-242
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. The system that uses the artificial neural network(ANN) falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the SVM/ANN hybrid algorithm is proposed in this paper. The proposed algorithm is the method that ANN learns selectively after clustering the SNR data by SVM, then more improved performance estimation can be obtained than using ANN only and The proposed algorithm can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure. Experimental results indicate that the proposed SVM/ANN hybrid algorithm generally outperforms ANN algorithm.

A Study of Indoor Positioning Algorithm Based on UWB Fingerprinting and TDoA (UWB 핑거프린팅 및 TDoA 기반 실내 측위 알고리즘 연구)

  • Seo, Hyo-Seung;Lee, Joonbeom;Min, Jin gi;Song, Dong Hyuk;Kim, Hyeon jung;Son, Bong-Ki;Lee, Jaeho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.86-89
    • /
    • 2016
  • 실내 위치 인식 기술은 Wi-Fi, Bluetooth Low Energy 등 여러 기술을 통해 시도되어 왔으며, 실내 위치 인식 시스템의 상용화가 급증하는 추세이다. 대표적인 실내 측위 시스템인 Wi-Fi 기반 실내 측위는 고출력으로 넓은 범위에 서비스를 제공해주지만, 각 AP 마다 파워 출력이 다르기 때문에 위치 인식 측면에서의 오차가 발생하고, Bluetooth Low Energy 기반 실내 측위는 10m Cell 내에서는 정확한 인식이 가능하지반, 10m 거리 밖 오차는 매우 크다. UWB(Ultra Wide Band)[1][2][3]는 저전력으로, 3.1~10.6GHz의 대역올 이용하여, Wi-Fi의 10배 이상의 속도로 데이터를 전달한다. 이때, 데이터 전달에 사용되는 전파신호는 레이더 신호와 유사한 특징을 가져 거리측정에 사용될 수 있으며, 실내 측위 시 15cm 이내의 정확도를 가진다. 본 논문에서는 UWB의 광대역을 이용한 핑거프린팅과 정밀 측위를 위한 TDoA 기법을 이용한 정밀 실내 측위 알고리즘을 제안한다.

Study of Technical Comparison between Wi-Fi and BLE based on Fingerprinting toward Indoor Positioning System (실내위치측위를 위한 Wi-Fi 및 BLE 핑거프린팅 성능 기술 분석)

  • Seo, Hyo-Seung;Lee, Dohee;Lee, Joonbeom;Jo, Juyeon;Son, Bong-Ki;Lee, Jae-Kwon;Song, Je-Min;Lee, Jaeho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.95-97
    • /
    • 2016
  • 실내 위치 인식 기술은 여러 기술을 통해 시도되어 왔으며, 대표적인 기술로는 Wi-Fi 기반 위치 인식과 Bluetooth Low Energy 기반의 위치 인식이 있다. 하지만 Bluetooth Low Energy는 10m 거리 밖에선 오차가 많아지고 정밀도가 낮아지는 특성으로 인해 Wi-Fi가 보편화되었다. 본 논문에서는 핑거프린팅 기법을 이용하였을 때 Wi-Fi와 Bluetooth Low Energy의 위치 인식 기술의 성능 분석을 목적으로 기술되었다.

Implementation of a Real Time Indoor Positioning System for Medical Equipment Using Triangulation and Fingerprinting (삼각 측량 및 핑거프린트 방식을 이용한 의료 기기의 실시간 실내 측위 시스템 구현)

  • Nam, Hyo-Jin;Kim, Ju Hyun;Kim, Hyun Ah;Song, Hyun Ji;Baek, Se In;Song, Yang-Eui;Lee, Yong Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.20-23
    • /
    • 2017
  • 의료 기기 관리의 중요성에 따라 의료 기기의 실시간 실내 측위의 필요성이 대두되고 있다. 본 논문에서는 의료 기기에 Wi-Fi 태그를 부착하여 삼각 측량과 핑거프린트 방식을 이용한 의료 기기의 실시간 실내 측위 시스템을 구현하고자 한다. 중앙 제어 모듈과 의료 기기에 부착한 Wi-Fi 태그와의 통신을 통하여, 의료 기기의 위치 정보를 관리하는 데이터베이스를 실시간으로 파악함으로써 의료 기기의 정확한 위치 확인이 가능하다. 본 시스템을 통해 의료 기기에 부착한 Wi-Fi 태그의 실시간 위치 파악 및 정보 관리가 가능하여 의료 기기의 관리가 용이할 것으로 기대한다.