• Title/Summary/Keyword: fingerprint localization

Search Result 35, Processing Time 0.026 seconds

Indoor Localization Algorithm Using Smartphone Sensors and Probability of Normal Distribution in Wi-Fi Environment (Wi-Fi 환경에서 센서 및 정규분포 확률을 적용한 실내 위치추정 알고리즘)

  • Lee, Jeong-Yong;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1856-1864
    • /
    • 2015
  • In this paper, the localization algorithm for improving the accuracy of the positioning using the Wi-Fi fingerprint using the normal distribution probability and the built-in typed accelerometer sensor, the gyroscope sensor of smartphone in the indoor environment is proposed. The experiments for analyzing the performance of the proposed algorithm were carried out at the region of the horizontal and vertical 20m * 10m in the engineering school building of our university, and the performance of the proposed algorithm is compared with the fingerprint and the DR (dead reckoning) while user is moving according to the assigned region. As a result, the maximum error distance in the proposed algorithm was decreased to 2cm and 36cm compared with two algorithms, respectively. In addition to this, the maximum error distance was also less than compared with two algorithms as 16.64cm and 36.25cm, respectively. It can be seen that the fingerprint map searching time of the proposed algorithm was also reduced to 0.15 seconds compared with two algorithms.

Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE (WiFi와 BLE 를 이용한 Log-Distance Path Loss Model 기반 Fingerprint Radio map 알고리즘)

  • Seong, Ju-Hyeon;Gwun, Teak-Gu;Lee, Seung-Hee;Kim, Jeong-Woo;Seo, Dong-hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • The fingerprint, which is one of the methods of indoor localization using WiFi, has been frequently studied because of its ability to be implemented via wireless access points. This method has low positioning resolution and high computational complexity compared to other methods, caused by its dependence of reference points in the radio map. In order to compensate for these problems, this paper presents a radio map designed algorithm based on the log-distance path loss model fusing a WiFi and BLE fingerprint. The proposed algorithm designs a radio map with variable values using the log-distance path loss model and reduces distance errors using a median filter. The experimental results of the proposed algorithm, compared with existing fingerprinting methods, show that the accuracy of positioning improved by from 2.747 m to 2.112 m, and the computational complexity reduced by a minimum of 33% according to the access points.

Design of a Crowd-Sourced Fingerprint Mapping and Localization System (군중-제공 신호지도 작성 및 위치 추적 시스템의 설계)

  • Choi, Eun-Mi;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.595-602
    • /
    • 2013
  • WiFi fingerprinting is well known as an effective localization technique used for indoor environments. However, this technique requires a large amount of pre-built fingerprint maps over the entire space. Moreover, due to environmental changes, these maps have to be newly built or updated periodically by experts. As a way to avoid this problem, crowd-sourced fingerprint mapping attracts many interests from researchers. This approach supports many volunteer users to share their WiFi fingerprints collected at a specific environment. Therefore, crowd-sourced fingerprinting can automatically update fingerprint maps up-to-date. In most previous systems, however, individual users were asked to enter their positions manually to build their local fingerprint maps. Moreover, the systems do not have any principled mechanism to keep fingerprint maps clean by detecting and filtering out erroneous fingerprints collected from multiple users. In this paper, we present the design of a crowd-sourced fingerprint mapping and localization(CMAL) system. The proposed system can not only automatically build and/or update WiFi fingerprint maps from fingerprint collections provided by multiple smartphone users, but also simultaneously track their positions using the up-to-date maps. The CMAL system consists of multiple clients to work on individual smartphones to collect fingerprints and a central server to maintain a database of fingerprint maps. Each client contains a particle filter-based WiFi SLAM engine, tracking the smartphone user's position and building each local fingerprint map. The server of our system adopts a Gaussian interpolation-based error filtering algorithm to maintain the integrity of fingerprint maps. Through various experiments, we show the high performance of our system.

IoT-based Indoor Localization Scheme (IoT 기반의 실내 위치 추정 기법)

  • Kim, Tae-Kook
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.4
    • /
    • pp.35-39
    • /
    • 2016
  • This paper is about IoT(Internet of Things)-based indoor localization scheme. GPS and WiFi are widely used to estimate the location of things. However, GPS has drawback of poor reception and radio disturbance in doors. To estimate the location in WiFi-based method, the user collects the information by scanning nearby WiFi(s) and transferring the information to WiFi database server. This is a fingerprint method with disadvantage of having an additional DB server. IoT is the internetworking of things, and this is on rapid rise. I propose the IoT-based indoor localization scheme. Under the proposed method, a device internetworking with another device with its own location information like GPS coordinate can estimate its own location through RSSI. With more devices localizing its own, the localization accuracy goes high. The proposed method allows the user to estimate the location without GPS and WiFi DB server.

Improvement Technique of Localization Precision using Fingerprint Overlapping in Sensor Network (센서 네트워크에서 fingerprint 중첩을 이용한 위치인식 정밀도 향상 방법)

  • Jo, Hyeong-Gon;Jeong, Seol-Young;Kang, Soon-Ju
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.308-310
    • /
    • 2011
  • 최근 서비스 패러다임이 언제나 같은 서비스를 제공하는 수동적 형태의 서비스에서 현재의 상황에 맞게 (context-aware) 서비스를 제공하는 능동적 형태의 서비스로 변화하고 있다. 이때 현재 상황(context) 중에서 가장 중요한 정보가 위치정보이다. 따라서 효율적이면서도 정밀한 실내 위치인식 방법에 대한 연구가 필요하다. 본 연구팀은 이러한 위치인식의 요구사항을 만족시키기 위해 WSN(Wireless Sensor Network)을 이용한 위치인식 시스템을 제안한 바 있다. 하지만 기존 방법은 높은 효율성에 비해 위치인식의 정밀도가 낮은 단점이 있었다. 본 연구에서는 기존에 제안한 위치인식 프로토콜의 단점을 보완하기 위해 fingerprint 중첩을 사용하여 보다 높은 정밀도를 가지는 위치인식 방법을 제안한다. 기존 LIDx 프로토콜과 제안한 방법을 병행함으로써 효율적이면서도 정밀한 위치 인식형 서비스가 가능할 것으로 기대한다.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

Indoor Localization Methodology Based on Smart Phone in Home Environment (스마트 폰 기반의 가정환경 내 사용자 공간 위치 예측 기법)

  • Ahn, Daye;Ha, Rhan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.4
    • /
    • pp.315-325
    • /
    • 2014
  • In ubiquitous environment, User's location information is very important to serve personalized service to user. Previous works consider only User's locations in the big buildings and assume APs are fixed. Normal home environment, However, is consists of small spaces. And the state of APs is highly fluid. Previous research has focused on indoor localization in the building where has stationary AP environment. However, in this paper, we propose as User's Location Predicting System that finds out a space where a user is located based on Wi-Fi Fingerprint approach in home environments. The results that conducted real home environments are using the system show more than 80% accuracy.

A Study on Preprocessing Techniques of Data in WiFi Fingerprint (WiFi fingerprint에서 데이터의 사전 처리 기술 연구)

  • Jongtae Kim;Jongtaek Oh;Jongseok Um
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.113-118
    • /
    • 2023
  • The WiFi fingerprint method for location estimation within the home has the advantage of using the existing infrastructure and estimating absolute coordinates, so many studies are being conducted. Existing studies have mainly focused on the study of localization algorithms, but the improvement of accuracy has reached its limits. However, since a wireless LAN receiver such as a smartphone cannot measure signals smaller than the reception sensitivity of radio signals, the position estimation error varies depending on the method of processing these values. In this paper, we proposed a method to increase the location estimation accuracy by pre-processing the received signal data of the measured wireless LAN router in various ways and applying it to the existing algorithm, and greatly improved accuracy was obtained. In addition, the preprocessed data was applied to the KNN method and the CNN method and the performance was compared.

Database Investigation Algorithm for High-Accuracy based Indoor Positioning (WLAN 기반 실내 위치 측위에서 측위 정확도 향상을 위한 데이터 구축 방법)

  • Song, Jin-Woo;Hur, Soo-Jung;Park, Yong-Wan;Yoo, Kook-Yeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.85-93
    • /
    • 2012
  • In this paper, we proposed Wireless LAN (WLAN) localization method that enhances database construction based on weighting factor and analyse the characteristic of the WLAN received signals. The weighting factor plays a key role as it determines the importance of Received Signal Strength Indication (RSSI) value from number of received signals (frequency). The fingerprint method is the most widely used method in WLAN-based positioning methods because it has high location accuracy compare to other indoor positioning methods. The fingerprint method has different location accuracies which depend on training phase and positioning phase. In training phase, intensity of RSSI is measured under the various. Conventional systems adapt average of RSSI samples in a database construction, which is not quite accurate due to variety of RSSI samples. In this paper, we analyse WLAN RSSI characteristic from anechoic chamber test, and analyze the causes of various distributions of RSSI and its influence on location accuracy in indoor environments. In addition, we proposed enhanced weighting factor algorithm for accurate database construction and compare location accuracy of proposed algorithm with conventional algorithm by computer simulations and tests.

Hybrid approach based on LoRaWan and Wi-Fi fingerprint toward outdoor localization (LoRaWan 및 Wi-Fi fingerprint 기반 사용자 위치 추정 시스템)

  • Lee, Soon Bin;Kim, Woo Seong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.73-75
    • /
    • 2018
  • LoRaWan(Long Range Wide Area Network)은 저전력, 장거리 특성을 가진 무선 통신기술로 그 특성상 스마트 시티(Smart City), IoT(Internet of Things) 등에 각광받고 있다. 또한 LoRaWan은 Chirp 신호 특성에 의해 실외 삼각측량에 따른 사용자 위치 추정 기술을 제공한다. 본 논문에서는 이러한 LoRaWan의 특성에 더해 Wi-Fi 지문 정보를 활용하여 위치 추정 정확도를 개선하고 또한 이웃 Wi-Fi 단말들, 가령 스마트폰 등의 위치 정보를 LoraWan 게이트웨이와 통신하여 최종적으로 서버에서 측위 할 수 있는 시스템을 제안한다.