• 제목/요약/키워드: finger force

검색결과 187건 처리시간 0.026초

뇌졸중 환자의 엄지손가락 재활운동을 위한 직교형 엄지손가락 재활로봇 개발 (Development of Rectangular-type Thumb Rehabilitation Robot for Stroke Patient's Thumb Rehabilitation Exercise)

  • 김현민;김용국;신희석;윤정원;김갑순
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.516-523
    • /
    • 2012
  • Stroke patients should exercise for the rehabilitation of their fingers, because they can't use their hand and fingers. The moving direction of thumb of five fingers is different that of four fingers (force finger, middle finger, ring finger, little finger). The thumb rehabilitation robot for rehabilitation exercise must be included a force control system, because robot can injure thumb by applying too much force. In this paper, the rectangular-type thumb rehabilitation robot was developed for stroke patient's thumb rehabilitation exercise of the flexibility rehabilitation exercise. The characteristic test of the developed rectangular-type thumb rehabilitation robot was carried out with normal men in their twenties. As a result, it is thought that the robot can be used for the flexibility rehabilitation exercise of stroke patient's thumb.

손가락 재활로봇의 5축 힘/모멘트센서를 이용한 손 누름제어 (Hand Pressing Control Using the Five-Axis Force/Moment Sensor of Finger Rehabilitation)

  • 김현민;김갑순
    • 센서학회지
    • /
    • 제21권3호
    • /
    • pp.192-197
    • /
    • 2012
  • This paper describes the control of the hand fixing system attached to the finger rehabilitation robot for the rehabilitation exercise of patient's fingers. The finger rehabilitation robot is used to exercise the finger rehabilitation, and a patient's hand is safely fixed using the hand fixing system. In this paper, the hand fixing system was controlled with PD gains to fix a palm of the hand, and the characteristic test for the hand fixing system was carried out to sense the fixed hand movement of the front and the rear, that of the left and the right, and that of the upper. It is thought that the hand fixing system could safely fix the hand, and the movement of the fixed hand could be perceived using the five-axis force/moment sensor attached to the hand fixing system.

압전소자로 구동되는 유연성 로봇 핑거의 제어 (The Control of a flexible Robotic Finger Driven by PZT)

  • 류재춘;박종국
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

뇌졸중환자를 위한 직교형 4개 손가락 재활로봇 기구설계 (Design of Rectangular-Type Four-Finger Rehabilitation Robot for Stroke Patient)

  • 김현민;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.473-480
    • /
    • 2013
  • This paper describes the design of a rectangular-type four-finger rehabilitation robot for flexibility rehabilitation of stroke patients' fingers and other patient's paralyzed fingers. The four-finger rehabilitation robot is composed of a body and each finger rehabilitation robot instrument. The four-finger rehabilitation robot could exercise four fingers (forefinger, middle finger ring finger and little finger) of patient for their rehabilitation. The four-finger rehabilitation robot instruments move according to the trace which spread out the patient's fingers and then turn them inward for the fingers' flexibility, while at the same time performing the force control with the reference forces for fingers' safety, simultaneously. A control characteristic test of the developed rectangular-type four-finger rehabilitation robot was carried out, and the results confirmed that the robot could be used for the flexibility rehabilitation exercise for the fingers of normal person and patients.

구형 디지털 손가락 힘측정장치를 이용한 재활정도 판단 방법 (Judgment Method of the Rehabilitation Extent using a Spherical Type Digital Finger Force Measuring System)

  • 김현민;김갑순
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.729-735
    • /
    • 2014
  • This paper presents the judgment method of the rehabilitation extent using a spherical type digital finger force measuring system (SDFFMS). Stroke patients can't use their fingers because of the paralysis of their fingers, but they can recover with rehabilitative training. The SDFFMS has been already developed by Kim (Author of this paper), and the finger grasping forces of normal people and stroke patients could be measured using it. But the SDFFMS could be not used to judge the extent of their rehabilitation, because the judgment method using it is not yet developed. In this paper, the characteristics tests for the grasping forces of normal persons and stroke patients were performed using the SDFFMS, and the judgment method of the rehabilitation extent was developed using the results. The tests confirm that the rehabilitation extent of stroke patients could be judged using the developed judgment method.

조직배양체 이식로봇 시스템의 개발 (I) - 소프트 그리퍼 - (Development of a transplanting robot system for tissue culture plants (I) - a soft gripper -)

  • 이현동;김기대;김찬수
    • Journal of Biosystems Engineering
    • /
    • 제23권5호
    • /
    • pp.491-498
    • /
    • 1998
  • Transplanting process during the tissue culture of potato seedlings is costly, since the cost of highly skilled labor working in the sanitary environment takes up about 60-70% of the production cost. The objective of this study was to develop a soft gripper of a transplanting robot system for the labor-saving tissue culture. The prototype of the soft gripper was consisted of power-transmitting part finger and plant contacts. The power transmitting part transformed the rotating motion of a step motor to the reciprocating motion of the finger. Plant stems used in the test were potato seedlings cultured for six weeks. The dimensional characteristics of cultured seedlings, the compressive strengths of the stems, the extractive force from the culture medium and the gripping force of the finger were measured. A proper gripping force was found to be 0.343N at the extractive force of 0.41N when the plant contacts were made of silicon. Sixteen plants out of 70 trials were tangled with others, resulting in the success rate of 77.1%.

  • PDF

손가락환자를 위한 링크형 엄지손가락 재활로봇 설계 (Design of Link-type Thumb Rehabilitation Robot for Finger Patients)

  • 김현민;김갑순
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.709-716
    • /
    • 2013
  • Rehabilitation of finger patients requires that the patients exercise their hands and fingers for proper functioning to return. A thumb rehabilitation robot, equipped with a two-axis force sensor, can prevent injury to the thumb by monitoring the applied pulling force. In this paper, we describe a link-type thumb rehabilitation robot designed for patients' thumb rehabilitation exercise. Tests of the manufactured link-type thumb rehabilitation robot were performed on normal male patients. Our results show that the robot can be used for flexibility and muscle-strength rehabilitation exercises for a patient's thumb.

여유구동을 이용한 5관절 휴먼핑거의 개발 (Development of a five-bar finger with redundant actuation)

  • 이재훈;이병주;오상록;김병호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1613-1616
    • /
    • 1997
  • In order to develop a human hand mechanism, a 5-bar finger with redundant actuation is designed and implemented. an optimal set of acutator locations and link lengths for the case of one redundant actuator is obtained by employing a composite design index which simulataneously consider several performance indices such as workspace, isotropic index, and force transmission ratio. Each joing is driven by an compact actuator mechanism having ultrasonic motor and a gear set with poeneiometer an controlled by VME Bus-based control system.

  • PDF