• 제목/요약/키워드: finger AROM

검색결과 2건 처리시간 0.017초

손 재활 로봇의 적용이 만성 뇌졸중 환자의 손 기능 향상에 미치는 영향 (Effect of Robot-Assisted Hand Rehabilitation on Hand Function in Chronic Stroke Patients)

  • 박진혁
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.273-282
    • /
    • 2013
  • The purpose of this study was to investigate effect of robot-assisted hand rehabilitation(Amadeo(R)) on hand motor function in chronic stroke patients. This study used a single-subject experimental design with multiple baselines across individuals. Three chronic stroke survivors with mild to sever motor impairment took part in study. Each participants had 2 weeks interval of starting intervention. Participants received robot-assisted therapy(45min/session. 3session/wk for 6wks). Finger active range of motion(AROM) was assessed by Range of Assessment program in Amadeo(R), and test-retest reliability was verified using Pearson correlation analysis. To investigate effect of Amadeo(R), finger AROM was measured immediately after each sessions and Fugl-Meyer Assessment of Upper extremity, Motor Activity Log, Nine hole peg board test and Jebsen-Taylor hand motor function test were assessed at pre-post intervention. Results were analyzed by visual analysis and comparison of pre-post tests. The test-retest reliability of Range of Assessment was good(r=.99). After robot-assisted therapy, finger AROM of participant 1, 2, and 3 was respectively improved by 18%, 3.6%, and 6% each. Hand motor function of participant 1, 3 was improved on all four tests, but not effect in participant 2. Robot-assisted hand rehabilitation could improve finger AROM and effect on hand motor function in chronic stroke patients.

웨어러블 소프트 센서 장갑의 손가락 관절 관절가동범위 측정에 대한 신뢰도 분석 (Reliability Analysis of Finger Joint Range of Motion Measurements in Wearable Soft Sensor Gloves)

  • 김은경;김진홍;김유리;홍예지;이강표;전은혜;배준범;김수인;이상이
    • PNF and Movement
    • /
    • 제21권2호
    • /
    • pp.171-183
    • /
    • 2023
  • Purpose: The purpose of this study was to compare universal goniometry (UG), which is commonly used in clinical practice to measure the range of motion (ROM) of finger joints with a wearable soft sensor glove, and to analyze the reliability to determine its usefulness. Methods: Ten healthy adults (6 males, 4 females) participated in this study. The metacarpophalangeal joint (MCP), interphalangeal joint (IP), and proximal interphalangeal joint (PIP) of both hands were measured using UG and Mollisen HAND soft sensor gloves during active flexion, according to the American Society for Hand Therapists' measurement criteria. Measurements were taken in triplicate and averaged. The mean and standard deviation of the two methods were calculated, and the 95% limits of agreement (LOA) of the measurements were calculated using the intraclass correlation coefficient (ICC) and Bland-Altman plot to examine the reliability and discrepancies between the measurements. Results: The results of the mean values of the flexion angles for the active range of motion (AROM) of the finger joints showed large angular differences in the finger joints, except for the MCP of the thumb. In the inter-rater reliability analysis according to the measurement method, the ICC (2, 1) value showed a low level close to 0, and the mean difference by the Bland-Altman plot showed a value greater than 0, showing a pattern of discrepancy. The 95% LOA had a wide range of differences. Conclusion: This study is a preliminary study investigating the usefulness of the soft sensor glove, and the reliability analysis showed a low level of reliability and inconsistency. However, if future studies can overcome the limitations of this study and the technical problems of the soft sensor glove in the development stage, it is suggested that the measurement instrument can show more accurate measurement and higher reliability when measuring ROM with UG.