• Title/Summary/Keyword: fine sand

Search Result 735, Processing Time 0.023 seconds

Development of a Wave Absorbing System Using a Liquefied Sandbed

  • Kang, Yoon-Koo;Takahashi, Shigeo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.9-16
    • /
    • 2006
  • A new wave-absorbing system, called the liquefied sandbed wave barrier (LSWB) system, is currently under development at the Port and Airport Research Institute (PARI) of Japan. The wave damping effect by the LSWB system is substantial, as confirmed by small-scale experiments and FEM numerical calculations, i.e., the wave transmission coefficient of the system is less than 0.2. Here, the results of large-scale experiments arediscussed in view of practical application. Although the LSWB system provides high wave damping, nearly equal to theoretical values, difficulty exists in obtaining a homogeneously liquefied sandbed, due to the occurrence of liquefied sandbed compaction by cyclic wave loading, which in turn, reduces excess pare pressure and the wave damping effect. These two phenomena primarily occur when the sandbed is composed of fine sand with small permeability. Based on experimental results, we propose a design method that includes countermeasures against such problems, and a prototype LSWB system is constructed in a very large wave flume at PARI. Wave damping by the prototype LSWB system is confirmed to be quite stable and high, as predicted by theoretical calculations.

A Case of Pulmonary Alveolar Microlithiasis (폐포 미세 결석증 1예)

  • Lee, Bu-Hyun;Kang, Byung-Soo;Min, Joo-Won;Park, Sang-Joon;Kim, Tae-Ho;Chung, Jae-Ho;Park, Chan-Sub
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.1
    • /
    • pp.55-58
    • /
    • 2011
  • Pulmonary alveolar microlithiasis is a rare disease of unknown etiology that is characterized by the presence of calcific concentrations in the alveolar spaces. The radiographic appearance is pathognomonic. Plain chest radiographs show a white lung or sandstorm lung consisting of fine sand like microcalcifications diffusely scattered throughout both lungs with a higher density at the lung bases. We now report the case of a 67-year-old male whose diagnosis was based on characteristic findings on a chest X-ray and a high-resolution computed tomography scan.

Applicability of screenings for shotcrete's combined aggregates (숏크리트용 혼합골재로서 스크리닝스의 활용성 연구)

  • Han, Seung-Hwan;Yoo, Tae-Seok;Kim, Nag-Young;Kim, Hong-Jong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.149-160
    • /
    • 2013
  • In the mix proportion of shotcrete, it was analyzed as required in terms of eco-friendly technology to take advantage of the screenings. Screenings of recycling can be a solution in order to overcome the quality degradation due to the recent lack of good quality sand as well as the utilization of waste materials. Five regional screening and screening replaced fine aggregates for physical characteristics were analyzed to evaluate the usability screenings as shotcrete's combined aggregate. It was analyzed the effect of particle size distribution in the combined aggregate for shotcrete and maximum replacement was estimated according to the type of screenings.

Studies on the Application of Byproduct Composts as Substitute for Yacto in Yang-jik Nursery of Ginseng (인삼 양직모밭 약토대체 부산물퇴비 시용 연구)

  • Kang, Seung-Weon;Yeon, Byeong-Yeol;Lee, Sung-Woo;Hyun, Dong-Yun;Bae, Yeoung-Seuk;Hyeon, Geun-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.415-420
    • /
    • 2009
  • This study was carried out to select economical byproduct composts as the substitute for the traditional organic fertilizer, Yacto, in the cultivation of ginseng seedlings, and to investigate the application method of a selected compost. Among tested byproduct composts, popped rice hull compost was the best substitute for Yacto, while the application of domestic animal manure composts resulted in red skinned roots of ginseng seedlings. Optimal mixing ratio of the popped rice hull compost with virgin soil (fine sand) were 3~4 : 1 in bulk, showing the same root yield compared to that of conventional seedbed soil. When the popped rice hull compost was lower than $1\;{\pm}\;0.1%$ in nitrogen content, the expeller cake of oil seed was added to seedbed soil to rise nitrogen content until $1\;{\pm}\;0.1%$.

Plastic viscosity based mix design of self-compacting concrete with crushed rock fines

  • Kalyana Rama, JS;Sivakumar, MVN;Vasan, A;Kubair, Sai;Ramachandra Murthy, A
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.461-468
    • /
    • 2017
  • With the increasing demand in the production of concrete, there is a need for adopting a feasible, economical and sustainable technique to fulfill practical requirements. Self-Compacting Concrete (SCC) is one such technique which addresses the concrete industry in providing eco-friendly and cost effective concrete. The objective of the present study is to develop a mix design for SCC with Crushed Rock Fines (CRF) as fine aggregate based on the plastic viscosity of the mix and validate the same for its fresh and hardened properties. Effect of plastic viscosity on the fresh and hardened properties of SCC is also addressed in the present study. SCC mixes are made with binary and ternary blends of Fly Ash (FA) and Ground Granulated Blast Slag (GGBS) with varying percentages as a partial replacement to Ordinary Portland Cement (OPC). The proposed mix design is validated successfully with the experimental investigations. The results obtained, indicated that the fresh properties are best achieved for SCC mix with ternary blend followed by binary blend with GGBS, Fly Ash and mix with pure OPC. It is also observed that the replacement of sand with 100% CRF resulted in a workable and cohesive mix.

Effect of Mold Materials on the Microstructure and Tensile Properties of Al-Si based Lost Foam Casting Alloy (Al-Si계 소실모형주조합금의 미세조직 및 인장성질에 미치는 주형재료의 영향)

  • Kim, Jeong-Min;Lee, Gang-Rae;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.39 no.5
    • /
    • pp.87-93
    • /
    • 2019
  • The effects of mold materials on the microstructure and tensile properties were investigated to develop a mass production technique of aluminum alloy parts with excellent mechanical properties using a lost foam casting method. The microstructures of the plate-shaped cast alloy showed a tendency to be finer in proportion to the thickness of the plate, and a remarkably fine structure was obtained by applying a steel chill or a ball as a mold material compared to general sand. When a steel ball was used, it was observed that the larger the ball, the finer the cast structure and the better the tensile properties. The microstructure and tensile properties of the cast parts with complex shapes were greatly affected by the gating system, but the positive effects of the steel chill and the steel ball as a mold material were clear.

Properties of Penicillin Amidohydrolase Immobilized on Nylon Fiber

  • B. L. Seng;Iw-Han Cho;J. S. Rhee;Dewey D. Y. Ryu
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.1
    • /
    • pp.10-17
    • /
    • 1980
  • Penicillin amidohydrolase was partially purified from the fermented broth of Bacillus megaterium, and was immobilized on nylon fiber. The surface area of nylon fiber was increased by roughening it with fine sand and activated by acid treatment. The free amino groups on the nylon fiber exposed by such treatment were then utilized to immobilize the penicillin amidase. Enzymatic properties of penicillin amidohydrolase immobilized on the nylon fiber by covalent bonding and cross linking with glutaraldehyde were studied and compared with those of soluble enzyme. The optimal pH and temperature profile of immobilized enzyme showed only slightly broader peaks, and the values of kinetic constants, $K_m$, $K_{ia}$, and $K_{ip}$, of the immobilized enzyme are only slightly greater than those of the soluble enzyme. These results suggest that the mass transfer effect on the reaction rate for the penicillin amidase immobilized on nylon fiber is not so significant as the enzyme immobilized on some other support material like bentonite. The experimental results of batch reaction agreed well with the results of computer simulation for both the immobilized and soluble enzyme systems, confirming the validity of the rate equation derived which was based on the combined double inhibition by two reaction products.

Effect of Sb and Sr Addition on Corrosion Properties of Mg-5Al-2Si Alloy (Mg-5Al-2Si 합금의 조직 및 부식특성에 미치는 Sb, Sr 첨가의 영향)

  • Jeon, Jongjin;Lee, Sangwon;Kim, Byeongho;Park, Bonggyu;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.304-309
    • /
    • 2008
  • Magnesium alloys containing $Mg_2Si$ particles, as a promising cheap heat-resistant magnesium alloy for automobile power train parts applications, are attracting more attention of both material scientists and design engineers. Modification of the Chinese script shape $Mg_2Si$ particle is a key for using this alloy in sand or permanent mould casting. In the present work, the modification effect of Sr and Sb on the corrosion properties of the Mg-5Al-2Si alloy was investigated. Sr or Sb addition promoted the formation of fine polygonal shape $Mg_2Si$ particles by providing the nucleation sites. Sr was more effective element than Sb for shape modification of Chinese script shape $Mg_2Si$. Such improved microstructure of the modified alloy resulted in large improvement in corrosion resistance as compared to unmodified Mg-5Al-2Si alloy.

Detection of Microphytobenthos in the Saemangeum Tidal Flat by Linear Spectral Unmixing Method

  • Lee Yoon-Kyung;Ryu Joo-Hyung;Won Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.405-415
    • /
    • 2005
  • It is difficult to classify tidal flat surface that is composed of a mixture of mud, sand, water and microphytobenthos. We used a Linear Spectral Unmixing (LSU) method for effectively classifying the tidal flat surface characteristics within a pixel. This study aims at 1) detecting algal mat using LSU in the Saemangeum tidal flats, 2) determining a suitable end-member selection method in tidal flats, and 3) find out a habitual characteristics of algal mat. Two types of end-member were built; one is a reference end-member derived from field spectrometer measurements and the other image end-member. A field spectrometer was used to measure spectral reflectance, and a spectral library was accomplished by shape difference of spectra, r.m.s. difference of spectra, continuum removal and Mann-Whitney U-test. Reference end-members were extracted from the spectral library. Image end-members were obtained by applying Principle Component Analysis (PCA) to an image. The LSU method was effective to detect microphytobenthos, and successfully classified the intertidal zone into algal mat, sediment, and water body components. The reference end-member was slightly more effective than the image end-member for the classification. Fine grained upper tidal flat is generally considered as a rich habitat for algal mat. We also identified unusual microphytobenthos that inhabited coarse grained lower tidal flats.

The effect of high-temperature on foamed concrete

  • Canbaz, Mehmet;Dakman, Hafid;Arslan, Baris;Buyuksungur, Arda
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Within the scope of this study, the foam solution was prepared by properly mixing sulfonate based foam agent with water. Furthermore, this solution was mixed with the mixture of fine sand, cement, and water to produce foamed concrete. The mixture ratios which are the percentage of foam solution used in foam concrete were chosen as 0, 20, 40 and 60% by vol. After these groups reached 28 days of strength, they were heated to 20, 100, 400 and $700^{\circ}C$ respectively. Afterward, high-temperature effects on the foamed concrete were obtained by employing physical and mechanical properties tests. Additionally, SEM (scanning electron microscope) and EDX (energy-dispersive X-ray spectroscopy) tests were employed to analyze the microstructure, and ${\mu}-CT$ (micro computed tomography) images were used to reconstruct 3-D models of the heat-treated specimens. Then, these models are analyzed to examine the void structures and the changes in these structures due to the high temperatures. The study has shown that the void structures reduce the high-temperature effects and the foam solution could be mixed with concrete up to 40 % by vol. where the high strength of foamed concrete is non-mandatory.