• 제목/요약/키워드: fine metal particles

검색결과 155건 처리시간 0.029초

초임계수를 이용한 금속산화물 미세입자 제조 (Production of Fine Metal Oxide Particles in Supercritical Water)

  • 이주헌;박영우
    • 공업화학
    • /
    • 제10권1호
    • /
    • pp.173-176
    • /
    • 1999
  • 초임계수를 이용한 금속산화물의 미세입자 제조에 대하여 연구하였다. 금속염 수용액으로는 cobalt nitrate solution과 manganese nitrate solution을 sample solution으로 선택하여 코발트산화물과 망간산화물 입자를 제조하였다. 얻어진 결과로부터 초임계수를 이용한 금속산화물 미세입자의 제조가 가능함을 확인할 수 있었으며, 초임계수 하에서는 매우 빠른 dehydration반응이 일어남을 관찰할 수 있었다. 짧은 반응시간(30~100 초)에도 불구하고 미세입자 ($0.5{\sim}2{\mu}m$)가 생성되었으며, 초임계수 공정에서는 mixer의 온도가 입자의 크기 및 분포에 큰 영향을 미침을 알 수 있었다. 반응온도 조절을 통하여 입자의 크기를 제어할 수 있음을 확인할 수 있었다.

  • PDF

전기폭발방식을 이용한 동(Cu) 미분 제조 및 인가전압의 영향 (The effects of applied voltage on copper powder manufactured by electric explosion)

  • 이후인;김원백;서창열;손정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.474-475
    • /
    • 2007
  • Wire electrical explosion(WEE) has been used for the production of fine metal particles. In WEE, electrical powder was stored and compressed into capacitor and released to produce fine particles through evaporation and condensation. In this study, the effect of applied voltage on the size of copper powders was investigated. High tension was added up to the explosion device by dividing 4 steps. At voltages lower than 5.2 kV, the fraction of powders finer than $44{\mu}m$ was almost negligible. The effectiveness of explosion increased sharply with increased voltage over 5.8 kV. At the highest voltage of 6.4 kV, more than 80% of explosion products were finer than $44{\mu}m$.

  • PDF

Magnetic force assisted settling of fine particles from turbid water

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권2호
    • /
    • pp.7-11
    • /
    • 2020
  • When rivers and lakes are contaminated with numerous contaminants, usually the contaminants are finally deposited on the sediments of the waterbody. Many clean up technologies have been developed for the contaminated sediments. Among several technologies dredging is one of the best methods because dredging removes all the contaminated sediments from the water and the contaminated sediments can be completely treated with physical and chemical methods. However the most worried phenomenon is suspension of fine particles during the dredging process. The suspended particle can release contaminants into water and resulted in spread of the contaminants and the increase of risk due to the resuspension of the precipitated contaminants such as heavy metals and toxic organic compounds. Therefore the success of the dredging process depends on the prevention of resuspension of fine particles. Advanced dredging processes employ pumping the sediment with water onto a ship and release the turbid water pumped with sediment into waterbody after collection of sediment solids. Before release of the turbid water into lake or river, just a few minutes allowed to precipitate the suspended particle due to the limited area on a dredging ship. However the fine particle cannot be removed by the gravitational settling over a few minutes. Environmental technology such as coagulation and precipitation could be applied for the settling of fine particles. However, the process needs coagulants and big settling tanks. For the quick settling of the fine particles suspended during dredging process magnetic separation has been tested in current study. Magnetic force increased the settling velocity and the increased settling process can reduce the volume of settling tank usually located in a ship for dredging. The magnetic assisted settling also decreased the heavy metal release through the turbid water by precipitating highly contaminated particles with magnetic force.

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • 정재우;김용식;윤관수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

Flying Trajectories of Fine Powder during Centrifugal Atomizing

  • Chonglin, Wang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.444-445
    • /
    • 2006
  • Flying trajectories of fine particles within a size range of $10{\sim}60{\mu}m$ were studied during centrifugal atomizing processes. A FORTRAN program was written by using increment method. Calculation results revealed that the drag force might reach very high value of 522-7800 g for fine powder of $10{\sim}60{\mu}m$. Flying distance in horizontal direction could be shortened if the particles fly obliquely due to the huge drug force. On the other hand, very fine powder could be projected to far distances when the atmosphere flow velocity is much stronger. Fortunately such particles could be contracted within a cylinder closed to the atomizer when the atmosphere flow was weaken or retained in a limited diameter.

  • PDF

3-Stage DRUM 샘플러를 이용한 광주 도심지역의 봄철과 여름철 PM2.5 원소적 조성 비교 (Elemental Composition of PM2.5 Particulate with a 3-Stage DRUM Sampler during Spring and Summer Seasons in Urban Area of Gwangju, Korea)

  • 류성윤;김영준
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.699-708
    • /
    • 2005
  • To characterize the elemental composition of fine particles in urban area, $PM_{2.5}$ was collected by a 3-stage DRUM impactor at Gwangju during spring and summer. Time and size resolved concentrations for 19 trace elements were obtained by synchrotron X-Ray fluorescence analysis. Trace elements in summer were distributed in smaller size range compared to those in spring. Almost trace element concentrations in fine particles were highly increased during the Asian dust. In spring, soil elements such as Si, K, Ca, Ti and Fe had low enrichment factors indicating the dominant influence of soil dust. However, all elements had high enrichment factors in summer implying that these elements could be emitted from the anthropogenic sources. Factor analysis was conducted with the elemental composition data in order to identify anthropogenic sources of aerosols in urban area during spring and summer. Fine particles in spring have several sources such as soil dust originating from China continental region, coal and oil combustion, biomass burning, sea salt, ferrous and nonferrous metal sources. On the other hand, fine particles in summer were influenced by road dust, gasoline vehicle as well as coal and oil combustion, sea salt, ferrous and nonferrous metal sources.

Self-Sustaining Combustion Process를 이용한 NiO/YSZ 초미세 복합분말 제조 (Preparation of NiO/YSZ Ultra-Fine Powder Composites Using Self-Sustaining Combustion Process)

  • 김선재;정충환;김경호;김영석;국일현
    • 한국세라믹학회지
    • /
    • 제33권4호
    • /
    • pp.411-417
    • /
    • 1996
  • Ultrafine NiO/YSZ (Yttria Stabilized Zirconia) powders were made by using a glycine nitrate process which is used as anode material for solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal nitrates occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized powders were examined with X-ray diffraction(XRD) Brunauer Emmett Teller with N2 absorption. scanning electron microscopy (SEM). and transmission electron microscopy (TEM). Ultrafine NiO/YSZ powders of 15-18 m2/g were obtained through GNP when the content of glycine was controlled to 1 or 2 times the stoichiometric ratio in the precursor solutions. Strongly acid precursor solution increased the specific surface area of the synthesized powders. This is suggested to be the increased binding of metal nitrates and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of {{{{ { NH}`_{3 } ^{+ } }}. After sintering and reducing treatment of NiO/YSZ powders synthesized by GNP the Ni/YSZ pellet showed ideal microstructure where very fine Ni particles of 3-5 ${\mu}{\textrm}{m}$ were distributed uniformly and fine pore around Ni metal particles was formed. leading to anincrease of the triple phase boundary among gas Ni and YSZ.

  • PDF

한반도의 황사 관측현황 및 배경지역 미세먼지의 화학적 조성에 관한 연구 (Study on the Yellow Sandy Dust Phenomena in Korean Peninsula and Chemical Compositions in Fine Particles at Background Sites of Korea.)

  • 백광욱;정진도
    • 환경위생공학
    • /
    • 제19권4호
    • /
    • pp.9-18
    • /
    • 2004
  • In this study, the observation data for the yellow sandy dust phenomena from the year 1999 to 2003 at background sites in Korea were collected at Global Atmospheric Observatory at An-Myeon island and its temporal variation were analyzed. The chemical characteristics of the fine particles were also analyzed in order to evaluate sources of the yellow sandy dust particles. The results showed that the monthly average mass concentration of the fine particles was the highest in springtime and the lowest in summertime in general. The magnitude of its variation was also the highest in March in which the occurrence of yellow sandy dust was the most frequent and thus the number of samples was the largest, while the lowest in June through September. The yearly variation of ion components contributions to the total mass concentration of the fine particles was slowly decreasing, showing that $63\%$ in 1999, $59\%$ in 2000 and $56\%$ in 2003. The most prevalent ion components in the fine particles were found to be $NO_3$ and $SO_4^{2-}$, which are known to be source materials of acidic precipitation, and $NH_4^+$, a neutralizing material of the acid precipitation. Relative proportion of metal components in the fine particles was calculated as $14\%$ in average, and their concentrations are in an order of Fe > Al > Na > Ca > Zn > Pb > Cu > Mn > Ni > Cd > Cr > Co > U. The results indicated that main sources of the metals was soil-originated Fe, Al, Ca, and Mg, and the contribution of anthropogenic air Pollution-originated Zn, Pb, Cu, Mn were also high and keep slightly increasing. Statistical analysis showed that the chemical components could be divided into soil-originated group of Mg, Al, Ca, Fe, and Mn and air pollution-originated group of $NO_3$, Zn, Pb, and they are occupying more than $60\%$of all the components in the dusty sand. The results explain that An-Myeon island is more influenced by soil-originated source than ocean-originated one and also the influencing strength of anthropogenic poilution-originated source is less than $50\%$ of that of soil-originated sources. Compared to non-yellow sandy period, the yellow sandy dust period showed that the amounts of soil-originated $Mg^{2+}$ and $Ca^{2+}$ and ocean-originated $Na^+$ and $Cl^-$ were increased to more than double and the metals of Mg, Al, Ca, Fe were also highly increased, while micro metal components such as Pb, Cd, Zn, which have a tendency of concentrating in air, were either decreased or maintained at nearly constant level. In the period of yellow sandy dust, a strong positive correlation was observed between water soluble ions and between metals in terms of its concentration, respectively. Factor analysis showed that the first group being comprised of about $43\%$ of the total inorganic components was affected by soil and they are ions of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ and metals of Na, Fe, Mn and Ni. The result also showed that the metals of Mg and Cr were classified as second group and they were also highly affected by soil sources.

기계적 합금화 공정을 이용한 초미세 자성연마입자의 제조 및 특성 평가 (Fabrication of the Fine Magnetic Abrasives by using Mechanical Alloying Process and Its Polishing Characteristics)

  • 박성준;이상조
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.34-41
    • /
    • 2004
  • A new method to fabricate the fine magnetic abrasives by using mechanical alloying is proposed. The mechanical alloying process is a solid powder process where the powder particles are subjected to high energetic impact by the balls in a vial. As the powder particles in the vial are continuously impacted by the balls, cold welding between particles and fracturing of the particles take place repeatedly during the ball milling process using a planetary mill. After the manufacturing process, fine magnetic abrasives which the guest abrasive particles c lung to the base metal matrix without bonding material can be obtained. The shape of the newly fabricated fine magnetic abrasives was investigated using SEM and its polishing performance was verified by experiment. It is very helpful to finishing the injection mold steel in final polishing stage. The areal ms surface roughness of the workpiece after several polishing processes has decreased to a few nanometer scales.