• Title/Summary/Keyword: fine grain size

Search Result 516, Processing Time 0.03 seconds

Characterizing Hydraulic Properties by Grain-Size Analysis of Fluvial Deposits Depending on Stream Path in Korea

  • Oh, Yun-Yeong;Hamm, Se-Yeong;Chung, Sang Yong;Lee, Byeong Dae
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • The infiltration of rainwater into the surface soil is highly dependent on hydraulic variables, such as the infiltration rate, capillary fringe, moisture content, and unsaturated/saturated hydraulic conductivity. This study estimates the hydraulic conductivity (K) of fluvial deposits at three sites on the right and left banks of Nakdong River in Gyeongbuk Province, South Korea, including the Gumi, Waegwan, and Seongju bridge sites. The K values of 80 samples from 13 boreholes were estimated by using six grain-size methods (Hazen, Slichter, Kozeny, Beyer, Sauerbrei, and Pavchich formulae). The Beyer, Hazen, and Slichter methods showed a better relationship with K values along with an effective grain size than did the other three methods. The grain-size, pumping test, and slug test analyses resulted in different K values, but with similar K values in the grain-size analysis and pumping test. The lower K values of the slug test represent the uppermost fine sand layer.

Effect of Grain Size and Aging Conditions on Mechanical Properties of Al-Mg-X (X=Cr,Si) Alloy (Al-Mg-X (X=Cr, Si)합금의 기계적성질에 미치는 결정립크기와 시효조건의 영향)

  • Chang-Suk Han;Chan-Woo Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.77-85
    • /
    • 2023
  • In this study, the mechanical properties of the Al-Mg-X (X=Cr, Si) alloy, which clearly showed the influence of the specimen and grain size, were investigated by changing the specimen size extensively. In addition, the effect on the specimen size, grain size and aging condition on the mechanical properties of the grain refining alloy according to the addition of Cr was clarified, and the relationship between these factors was studied. As the specimen size decreased, the yield stress decreased and the fracture elongation increased. This change was evident in alloys with coarse grain sizes. Through FEM analysis, it was confirmed that the plastic deformation was localized in the parallel part of specimen S2. Therefore, when designing a tensile specimen of plate material, the W/L balance should be considered along with the radius of curvature of the shoulder. In the case of under-aged materials of alloys with coarse grain size, the fracture pattern changed from intergranular fracture to transgranular fracture as W/d decreased, and δ increased. This is due to the decrease in the binding force between grains due to the decrease in W. In the specimen with W/d > 40 or more, intergranular fracture occurred, and local elongation did not appear. Under-aged materials of alloys with fine grain size always had transgranular fracture over a wide range of W/d = 70~400. As W/d decreased, δ increased, but the change was not as large as that of alloys with coarse grain sizes. Compared to the under-aged material, the peak-aged material did not show significant dependence on the specimen size of σ0.2 and δ.

Effects of Austenitization Temperature and Hot Deformation on Microstructure of Microalloyed Low Carbon Steels (저탄소 미량합금강의 미세조직에 미치는 고온변형의 효과)

  • Kim, Sea-Arm;Lee, Sang Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.2
    • /
    • pp.83-89
    • /
    • 2003
  • As a research for developing fine-grained high strength low carbon steels, the effects of austenitization temperature and hot deformation on microstructure was investigated in 0.15 wt.% carbon steels with microalloying elements such as Nb and Ti. When the steels were reheated at $1250^{\circ}C$, Nb containing steel showed very coarse austenite grain size of $200{\mu}m$ whereas Nb-Ti steel did fine one of $70{\mu}m$ because Ti carbonitrides could suppress the austenite grain growth. In case of 50% reduction at $850^{\circ}C$, the austenite grains in the Nb steel partially recrystallized while those in the Nb-Ti steel fully recrystallized probably due to finer prior austenite grains.For the Nb-Ti steel, ferrite grain size was not sensitively changed with austenitization temperature and compression strain and, severe deformation of 80% reduction was not essentially necessary to refine ferrite grains to about $3{\mu}m$ which could be obtained through lighter deformation of 40% reduction.

The Effect of TMT on Mechanical Properties of Steel & Aluminum Alloy (철강(鐵鋼) 및 알루미늄재료(材料)의 기계적(機械的) 성능(性能)에 미치는 TMT(thermomechanical treatment)의 영향)

  • So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.1
    • /
    • pp.53-60
    • /
    • 1981
  • A study has been performed on the effect of TMT(thermomechanical treatment) on the mechanical properties of steel and aluminum alloys. Improvement of the mechanical properties on steel by HTMT is due to refinement of prior austenite grain size, martensite lath size and the distribution of fine carbide precipitates and on aluminum alloy by ITMT is due to grain size refinement, homogeneous distribution of small second phase particles and retardation of the recrystallization.

  • PDF

Geomorphological Characteristics and OSL Ages of the Moraeul dune in Daechoengdo Island, South Korea (대청도 모래울 사구의 지형 특성과 OSL 연대)

  • Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • Coastal dunes play an important role in coastal defense. The Moraeul dune in Daecheongdo Island is representative in this regard. However, there is little knowledge, concerning the morphology, grain size, and formation timing of the dune. This study investigated the geomorphological characteristics of the Moraeul dune using topographic surveys, grain size analyses, and OSL dating. The dune was classified as 'single accreted foredune', which was developed under dense vegetation cover and efficient sand trapping. The dune consisted of fine to medium sand with 1.6Φ of mean grain size, and was covered with pine trees (> 100 years old). The samples from the upper part of the dune yielded quartz OSL ages ranging 0.5 ~ 0.7 ka. Therefore, it is likely that the dune developed at least before the Little Ice Age and became what it is today about one century ago.

Combination of Mechano-chemical Activation and SHS for HTS Material Synthesis

  • N. Korobova;Deawha Soh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.96-99
    • /
    • 2004
  • The combination of mechano-chemical activation and Self-propagating High-temperature Synthesis (SHS) has widened the possibilities for both methods. For YBCO systems the investigation showed that a short-term mechano-chemical activation of initial powders before SHS leads to single-phase and ultra-fine products. A new technique for preparation ultra-fine high-temperature superconductors of YBCO composition with a grain size d <1 ${\mu}{\textrm}{m}$ is developed. The specific feature of the technique is formation of the YBa$_2$Cu$_3$O$_{7-{\delta}}$ crystalline lattice directly from an X-ray amorphous state arising as a result of mechanical activation of the original oxide mixture. The technique allows the stage of formation of any intermediate reaction products to be ruled out. X-ray and magnetic studies of ultra-fine high temperature superconductors (HTS) are carried out. Dimension effects associated with the microstructure peculiarities are revealed. A considerable enhancement of inter-grain critical currents is found to take place in the ultra-fine samples.fine samples.

  • PDF

The Relationship between Microstructure and Property of Rapidly Solidified Al-Mg-X(X=Cr, Zr or Mn) Asloys (급속응고 Al-Mg-X(X=Cr, Zr or Mn) 합금의 미세구조와 특성간의 관계)

  • 맹덕영
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.271-278
    • /
    • 1996
  • In this study, the effect of the transition elements on the microstructure and mechanical properties of rapidly solidified Al-Mg-X alloys was investigated. As a result of the rapid solidification processing, fine equiaxed grains with a mean diameter of 2 $\mu$m were observed in these alloys. Many fine particles were found to be distributed rather homogeneously throughout the matrix with relatively large particles occasionally at grain boundaries. The ultimate tensile strengths of Al-Mg-X alloys were found to decrease rather remarkably at 150 $^{\circ}C$ without the gain of the ductility at 150 $^{\circ}C$, which may result from segregation of $\beta$ ($Al_{3}Mg_{2}$) precipitates. Fine dimples were observed on the fracture surfaces for all alloy systems and the variation of the size and shape of dimples was not observed upon alloy systems. The ductility at 530 $^{\circ}C$ was found to be ~100%, suggesting that grain boundary sliding did not contribute to ductiliy despite he grain size stabilization. The absence of superplastic behavior may be associated with low boundary misorientation in rapidly solidified Al-Mg-X alloys.

  • PDF

A Study of the Development of a High-Strength Al-Zn Based Alloy for Die Casting I (고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 I)

  • Shin, Sang-Soo;Yeom, Gil-Yong;Kim, Eok-Soo;Lim, Kyung-Mook
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.936-941
    • /
    • 2010
  • Al-Zn based alloys are the most common types of wrought Al alloys. Although Al-Zn alloys have high strength, they cannot be applied to a conventional casting process. In this study, Al-Zn-based alloys applicable to a die casting process were developed successfully. The developed Al-45 wt% Zn-based alloys showed a fine equiaxed grain structure and high strength. A fine equiaxed grain having an average size of $25{\mu}m$ was obtained by the die casting process. The UTS and elongation of the new alloy are 475 MPa and ~3.5%, respectively. In addition, we elucidate the effect of a Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al96.3-xZnxCu3Si0.4Fe0.3) x=20, 30, 40, and 45 wt% alloys fabricated by a die casting process.

Comparison of the effects of irradiation on iso-molded, fine grain nuclear graphites: ETU-10, IG-110 and NBG-25

  • Chi, Se-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2359-2366
    • /
    • 2022
  • Selecting graphite grades with superior irradiation characteristics is important task for designers of graphite moderation reactors. To provide reference information and data for graphite selection, the effects of irradiation on three fine-grained, iso-molded nuclear grade graphites, ETU-10, IG-110, and NBG-25, were compared based on irradiation-induced changes in volume, thermal conductivity, dynamic Young's modulus, and coefficient of thermal expansion. Data employed in this study were obtained from reported irradiation test results in the high flux isotope reactor (HFIR)(ORNL) (ETU-10, IG-110) and high flux reactor (HFR)(NRL) (IG-110, NBG-25). Comparisons were made based on the irradiation dose and irradiation temperature. Overall, the three grades showed similar irradiation-induced property change behaviors, which followed the historic data. More or less grade-sensitive behaviors were observed for the changes in volume and thermal conductivity, and, in contrast, grade-insensitive behaviors were observed for dynamic Young's modulus and coefficient of thermal expansion changes. The ETU-10 of the smallest grain size appeared to show a relatively smaller VC to IG-110 and NBG-25. Drastic decrease in the difference in thermal conductivity was observed for ETU-10 and IG-110 after irradiation. The similar irradiation-induced properties changing behaviors observed in this study especially in the DYM and CTE may be attributed to the assumed similar microstructures that evolved from the similar size coke particles and the same forming method.

Carbide Grain Growth in Cemented Carbides

  • Mannesson, Karin;Agren, John
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.336-337
    • /
    • 2006
  • During sintering of cemented carbides abnormal grain growth is often observed but cannot be understood from the classical LSW-theory. A model based on 2-D nucleation of new crystalline layers and a grain-size distribution function is formulated and the equations are solved numerically. Experimental studies and computer simulations show that the initial grain size distribution has a strong effect on the grain growth behavior. For example, a fine-grained powder can grow past a coarser powder.

  • PDF