• Title/Summary/Keyword: fine grain size

Search Result 513, Processing Time 0.028 seconds

Coercivity of Nd-Fe-B-type Fine Particles Prepared from Different Precursor Materials

  • Kim, K.M.;Kwon, H.W.;Lee, J.G.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Fine Nd-Fe-B-type particles were prepared by ball milling of different types of Nd-Fe-B precursor materials, such as die-upset magnet, HDDR-treated material, and sintered magnets. Coercivity dependence on the grain and particle size of the powder was investigated. Coercivity of the milled particles was reduced as the particle size decreased, and the extent of coercivity loss was dependent upon the precursor material. Coercivity loss in the finely milled particles was attributed to the surface oxidation. The extent of coercivity loss in the fine particles was closely linked to grain size of the precursor materials. Coercivity loss was more profound for the fine particles with larger grain size. Contrary to the fine particles from the sintered magnets with larger grain size the fine particles (~10 um) from the die-upset magnet and HDDR-treated material with much finer grain size still retained high coercivity (> 10 kOe for die-upset magnet, > 4 kOe for HDDR-treated material).

Effect Of Bedding on the Microstructure of Si3N4 with Ultrafine SiC (초미립 SiC가 첨가된 질화규소에서 미세구조에 미치는 Bedding의 영향)

  • 이홍한;김득중
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • The effect of bedding on the microstructure of $Si_3N_4$ added with ultra-fine SiC was investigated. The bedding and the addition of ultra-fine SiC effectively inhibited grain growth of $Si_3N_4$ matrix grain. The microstructures of the specimens sintered with bedding powder consisted of fine-grains as compared with the specimens sintered without bedding powder. In addition, the grain size and the difference of grain size between the specimens sintered with bedding and without bedding was reduced with increasing SiC content. Some ultra-fine SiC particles were trapped in the $Si_3N_4$ grains growed. The number of SiC particles trapped in the $Si_3N_4$ grains increased with increasing the grain growth. When ultra-fine SiC particles were added in the $Si_3N_4$ ceramics, the strength was improved but the toughness was decreased, which was considered to be resulted from the decrease of the grain size.

Computer Simulation for Microstructure Development in Porous Sintered Compacts (다공질 소결체의 조직형성에 관한 컴퓨터 시뮬레이션)

  • Shin, Soon-Ki;Matsubara, Hideaki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.213-219
    • /
    • 2006
  • A Monte Carlo simulation based on Potts model in a three dimensional lattice was studied to analyze and design microstructures in porous sintered compacts such as porosity, pore size, grain (particle) size and contiguity of grains. The effect of surface energy of particles and the content of additional fine particles to coarse particles on microstructure development were examined to obtain fundamentals for material design in porous materials. It has been found that the larger surface energy enhances sintering (necking) of particles and increases contiguity and surface energy does not change pore size and grain size. The addition of fine particles also enhances sintering of particles and increases contiguity, but it has an effect on increment of pore size and grain size. Such a simulation technique can give us important information or wisdom for design of porous materials, e.g., material system with high surface energy and fine particle audition are available for higher strength and larger porosity in porous sintered compacts with applications in an automobile.

Grain Size Partitioning Using the Weibull Function and Origin of Fluvial Terrace Deposits (Weibull 함수를 이용한 입도 분리와 하안단구 퇴적층의 기원)

  • Park, Chung-Sun;Cho, Young-Dong;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.15-27
    • /
    • 2019
  • This study tries to reveal transport mechanism and origin of components from fluvial terrace deposits in Danyang and Geum River basins, through grain size partitioning using the Weibull function. Grain size parameters suggest that the samples analyzed in this study can be grouped into the coarse, fine and medium samples. The coarse samples are partitioned into three or four components. More than 65% of the coarse samples consist of components by suspension and saltation by fluvial process, while components by attachment to coarse grains or aggregates and/or by individual grains deposited under non-flow condition are also found in the coarse samples. The fine samples consist of four components and components found in loess deposits in Korea occupy >70%, suggestive of the same transport mechanisms (westerlies and winter monsoon) and common source areas with loess deposits in Korea. However, components by aeolian process from local sources as well as by fluvial process are also found in the fine samples. The medium samples are partitioned into components with similar sizes to the coarse and fine samples, respectively.

Machinability Evaluation of Endmill Tool through Development of Ultra-fine Grain Grade Cemented Tungsten Carbide Material (초미립 초경소재 개발을 통한 엔드밀 공구의 성능 평가)

  • 김홍규;서정태;권동현;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.865-869
    • /
    • 1997
  • In recent years, there has been increasing demand of ultra-fine grain graded cemented tungsten carbide material with high hardness and toughness which is used as high speed cutting tool for development in semiconductor, electronics and die/mold industry, which bring into limelight high-precision, high-efficient machining of sculptured surfaces. This paper deals with the performance of variation in the ultra-fine grain graded cemented tungsten carbide material such as grain size, hardness and density varied according to the volume of added elements, Co or TaC, and he changing of mixing, sintering process. Also, the performance of developing material with uniformed grain size of 0.5${\mu}{\textrm}{m}$ is compared with other domestics' & foreign companies' with analyzing and cutting performance testing.

  • PDF

The Production Technology of Surface Fine Grain Steels by Controlled Rolling and Cooling Technology (제어압연에 의한 표면미세립강의 제조 기술)

  • 신정호;박상덕;이정환;이용희;장병록
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.188-197
    • /
    • 1999
  • Grain refinement of the structural steels was selected as the most effective method to meet improvement of strength and toughness without heat treatment. So, the future research and developing direction of ultra fine grain steels are more and more required to response to the production of eco - materials(environmental consciousness - materials) In this paper, the product of surface fine grain steels by CRCT and Inverse Transformation Method by warm deformation of martensite is carried out in order to improve the production process of Dowel Bar. It is possible to obtain surface ultra fine grain steel, when warm deformation of martensite formed after quenching is carried out from 730$^{\circ}C$ to 800$^{\circ}C$ in the finishing rolling step. The characters of surface with ultra fine grain steel is showing the cementite particles inside the ferrite grain and fine ferrite grain of about 1.2$\mu\textrm{m}$ in size.

  • PDF

Fabrication of Fine-grained Molybdenum Sintered Body via Modified Sintering Process (소결 공정 개선을 통한 미세 결정립 몰리브덴 소결체 제조)

  • Lee, Tae Ho;Kim, Se Hoon;Park, Min Suh;Suk, Myung Jin;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.868-873
    • /
    • 2011
  • In this study, the fabrication of ultra fine grained Mo bulk was conducted. $MoO_3$ nanopowders were prepared by a high energy ball-milling process and then reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The particle size of Mo nanopowder was ~150 nm and grain size was ~40 nm. The two-step process was employed for the sintering of Mo nanopowder to obtain fine grain size. The densification over 90% could be obtained by the two-step sintering with a grain size of less than 660 nm. For higher density, modified two-step sintering was designed. 95% of theoretical density with the grain size of 730 nm was obtained by the modified two-step sintering.

A New Method of HTS Material Synthesis by Combination of MCA and SHS

  • Korobova, N.;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1270-1273
    • /
    • 2004
  • The combination of methane-chemical activation and Self-propagating High-temperature synthesis (SHS) has widened the possibilities for both methods. For YBCO systems the investigation showed that a short-term mechano-chemical activation of initial powders before SHS leads to single-phase and ultra-fine products. A new technique for preparation ultra-fine high-temperature superconductors of YBCO composition with a grain size d < $1{\mu}m$ is developed. The specific feature of the technique is formation of the $YBa_2Cu_3O_{7-x}$ crystalline lattice directly from an X-ray amorphous state arising as a result of mechanical activation of the original oxide mixture. The technique allows the stage of formation of any intermediate reaction products to be ruled out. X-ray and magnetic studies of ultra-fine high temperature superconductors (HTS) are carried out. Dimension effects associated with the microstructure peculiarities are revealed. A considerable enhancement of inter-grain critical currents is found to take place in the ultra-fine samples investigated.

  • PDF

Effect if Grain Size on Plasticity of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 소성 변형 특성에 미치는 결정립 크기의 효과)

  • 이승건
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.807-812
    • /
    • 1998
  • Mechanical properties of two types of polycrystlline {{{{ { { Ti}_{3 }SiC }_{2 } }} with different grain size were investigated. A fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} has a higher fracture strength and hardness. Plot of strength versus Vickers indentation load indicated that {{{{ { { Ti}_{3 }SiC }_{2 } }} has a high flaw tolerance. Hertzian indentation test using a spherical indenter was used to study elastic and plastic behavior in {{{{ { { Ti}_{3 }SiC }_{2 } }}. Indentation stress-strain curves of each material are made to evaluate the plasticity of {{{{ { { Ti}_{3 }SiC }_{2 } }} Both find and coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} showed high plasticity. In-dentation stress-strain curve of coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} deviated even more from an ideal elastic limit in-dicating exceptional plasticity in this material. Deformation zones were formed below the contact as well as around the contact area in both materials but the size of deformation zone in coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} was much larger than that in fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} Intragrain slip and kink would account for high plasticity. Plastic behavior of {{{{ { { Ti}_{3 }SiC }_{2 } }} was strongly influenced by grain size.

  • PDF

Low-Temperature Superplastic Deformation Behavior of Fine-Grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy (미세 결정립 Ti-6Al-2Sn-4Zr-2Mo-0.1Si 합금의 저온 초소성 변형 거동)

  • Park, C.H.;Lee, B.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.544-549
    • /
    • 2009
  • This study aimed to elucidate the deformation mechanism during low-temperature superplasticity of fine-grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy in the context of constitutive equation. For this purpose, initial coarse equiaxed microstructure was refined to $2.2{\mu}m$ via dynamic globularization. Globularized microstructure exhibited large superplastic elongations(434-826%) at temperatures of $650-750^{\circ}C$ and strain rate of $10^{-4}s^{-1}$. It was found that the main deformation mechanism of fine-grained material was grain boundary sliding accommodated by dislocation motion with both stress exponent (n) and grain size exponent (p) values of 2. When the alpha grain size, not sub-grain size, was considered to be an effective grain size, the apparent activation energy for low-temperature superplasticity of the present alloy(169kJ/mol) was closed to that of Ti-6Al-4V alloy(160kJ/mol).