• Title/Summary/Keyword: film-making

Search Result 416, Processing Time 0.029 seconds

Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED (OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구)

  • Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

Considerations for Making Liposomes by Thin Film-Hydration Method

  • Gyeong-Tak Byeon;Ji-Yoon Son;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.151-156
    • /
    • 2022
  • Liposomes are bilayered particles that are surrounded by an aqueous solvent with amphiphilic substances such as phospholipids. Liposomes have the potential to overcome the limitations of physiochemical properties of existing drugs, and are therefore widely used in research for the treatment of many diseases, especially cancer. Currently, there are many liposome manufacturing methods that use various lipids and amphiphiles. Among them, the thin film-hydration method is a traditional and very simple method to prepare liposomes by hydrating a dry lipid film in an aqueous solvent, which has been widely used in the laboratory until recently. Recently, approaches to new nuclear imaging agents and radiotherapy by loading radioactive isotopes inside liposomes have been actively studied. In this review, we would like to discuss considerations for preparing liposomes using the thin film-hydration method.

Property variations of undoped ZnO thin films with deposition conditions (증착조건에 따른 undoped ZnO 박막의 특성 변화)

  • Nam, Hyoung-Gin;Lee, Kyu-Hwang;Cho, Nam-Ihn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.51-54
    • /
    • 2008
  • In this study, we investigated variations in undoped ZnO thin film properties with working pressure, $O_2$/Ar ratio, and annealing ambient. Higher vacuum pressure during deposition was observed to bring about slower growth rate resulting in samples with better crystallinity as well as hole generation efficiency through formation of shallower oxygen interstitial. Given that $O_2$/Ar ratio is greater than unity, O provided from the ambient to ZnO during annealing was found to preferably situate at interstitial sites. When He was used for the second annealing, significant changes were not observed. On the other hand, O ambient caused increased density of oxygen interstitial, thereby making the film more intrinsic-like high resistivity ZnO.

  • PDF

Optimization of address delay time in PDP by controlling the MgO characteristics

  • Jeong, Sang-Cheol;Jeong, Jong-In;Kim, Jeong-Jun;Song, Min-Ki;Kim, Ki-Bum;Mo, Bu-Kyung;Woun, Yong-Kyun;Yoon, Chang-Bun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.965-969
    • /
    • 2008
  • MgO thin film is widely used in PDP panel for protecting the dielectric layer and making firing voltage low. In this paper, the MgO thin film and discharge characteristics was analyzed as hydrogen flow rate increasing. Using hydrogen in deposition chamber makes add delay time of PDP module longer or shorter. It is the reason why thin film surface layer thickness on the MgO surface changes.

  • PDF

EMI Mesh Development for the PDP using Electroforming (Electroforming을 이용한 PDP용 EMI 메시 개발)

  • Kwon, H.H.;Beom, M.W.;Lim, S.Y.;Hwang, C.S.;Park, D.S.;Lee, T.W.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.108-113
    • /
    • 2011
  • There are a lot of PDP TV for a plasma discharge pulse voltage generated by the use of electromagnetic waves. EMI mesh film is near Infrared ray caused by malfunction of the remote control intended to prevent this phenomenon. In this study, the formation of fine pattern by making the mold is imprinted on the film sheet. EMI mesh film has been granted by filling in the conductive material region imprinted with electroforming in the manufacture of resistance. The fine patterns fabricated with electroforming facility thickness of homogenization process technology were established to optimize the working conditions.

Making sung lass lens by using ferrite plating and the effect of cutting off ultraviolet (페라이트 도금법에 의한 선글라스 렌즈의 제작과 자외선 차단효과)

  • Ha, T.W.;Cha, J.W.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.1
    • /
    • pp.35-38
    • /
    • 2002
  • Ferrite thin film with glass substrate was prepared by ferrite plating method in order to make sunglass which cut off ultraviolet and electromagnetic field. It has single phase of polycrystalline spinel structure and has gloss like as mirror and has hardness without scratch by scraping with nail. The transmittance of ferrite thin film is lowered near 400nm manifestly, which shows that the ferrite thin film was cut off ultraviolet successfully. Therefore, the sunglass with ferrite plating is use of cut of ultraviolet and electromagnetic field.

  • PDF

The Electric Breakdown Characteristic of High Density Polyethylene by Making Use of Solution-grown Thin Films (용액법에 의해 작성한 고밀도 폴리에틸렌 박막의 절연파괴(絶緣破壞)특성 연구)

  • Kim, S.K.;Lee, H.W.;Han, S.H.;Park, K.S.;Park, G.M.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1379-1381
    • /
    • 1994
  • In order to investigate the effects of crystal structure in electrical breakdown of polyethylene film. Low molecular materials in polyethylene are removed by the method as follow. Polyethylene was dissolved in xylene and filtered through a glass fiber filter. And then, a polyethylene thin films of thickness $0.5 - 0.9{\mu}m$ are prepared with heat treatment from solution casting. To evaluate the performance of PE film, Electrical breakdown of PE film are measured on M( Al) - I (PE)-M(Al) system.

  • PDF

Thin Film Effects on Side Channel Signals (부 채널 신호에 대한 박막의 영향)

  • Sun, Y.B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • Even if transmissions through normal channel between ubiquitous devices and terminal readers are encrypted, any extra sources of information retrieved from encrypting module can be exploited to figure out the key parameters, so called side channel attack. Since side channel attacks are based on statistical methods, making side channel signal weak or complex is the proper solution to prevent the attack. Among many countermeasures, shielding the electromagnetic signal and adding noise to the EM signal were examined by applying different thicknesses of thin films of ferroelectric (BTO) and conductors (copper and gold). As a test vehicle, chip antenna was utilized to see the change in radiation characteristics: return loss and gain. As a result, the ferroelectric BTO showed no recognizable effect on both shielding and adding noise. Cu thin film showed increasing shielding effect with thickness. Nanometer Au exhibited possibility in adding noise by widening of bandwidth and red shifting of resonating frequencies.

A Expermental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 공기 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;성승학;이득우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.231-235
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed. eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

Three-Dimensional Nanofabrication with Nanotransfer Printing and Atomic Layer Deposition

  • Kim, Su-Hwan;Han, Gyu-Seok;Han, Gi-Bok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.87-87
    • /
    • 2010
  • We report a new patterning technique of inorganic materials by using thin-film transfer printing (TFTP) with atomic layer deposition. This method consists of the atomic layer deposition (ALD) of inorganic thin film and a nanotransfer printing (nTP) that is based on a water-mediated transfer process. In the TFTP method, the Al2O3 ALD growth occurs on FTS-coated PDMS stamp without specific chemical species, such as hydroxyl group. The CF3-terminated alkylsiloxane monolayer, which is coated on PDMS stamp, provides a weak adhesion between the deposited Al2O3 and stamp, and promotes the easy and complete release of Al2O3 film from the stamp. And also, the water layer serves as an adhesion layer to provide good conformal contact and form strong covalent bonding between the Al2O3 layer and Si substrate. Thus, the TFTP technique is potentially useful for making nanochannels of various inorganic materials.

  • PDF