• 제목/요약/키워드: film-electrodes

검색결과 792건 처리시간 0.027초

Laterally Encapsulated Cathode Structure for DC Plasma Display Panels

  • Esfahani, M.Mokhlespour;Mohajerzadeh, S.;Goodarzi, A.;Rouhi, N.;Tarighat, R.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1233-1236
    • /
    • 2005
  • We report a novel approach for encapsulating of cathode electrodes in DC plasma pixels. Anode and cathode electrodes are laterally placed on a single substrate. The encapsulated electrode minimizes the sputtering of the cathode without significantly altering the turn-on voltage-pressure characteristics. An abnormal glow in current-voltage characteristics is also observed.

  • PDF

Pt 상부 전극 증착온도가 PZR 박막의 전지적 특성에 미치는 영향 (The Effects of Deposition Temperature of Pt Top Electrodes on the Electrical Properties of PZT Thin Films)

  • 이강운;이원종
    • 한국재료학회지
    • /
    • 제8권11호
    • /
    • pp.1048-1054
    • /
    • 1998
  • Pt 상부 전극 증착온도가 Pb(Zr,Ti)$O_3$(PZT) 박막의 전기적 특성에 미치는 영향에 대하여 연구하였다. Pt 상부 전극을 $200^{\circ}C$이상의 고온에서 증착하는 경우, Pt 전극의 하부에 위치한 PZT 박막은 강유전 특성이 심하게 저하되었으나, Pt 전극이 증착되지 않았던 부분은 강유전 특성이 저하되지 않았다. 이와 같은 현상이 발생된 것은 진공 chamber 내의 수증기가 Pt 상부전극의 촉매 작용에 의해 수소 원자로 분해되고, 이 분해된 수소 원자가 고온에서 Pt 하부의 PZT 박막 내로 확산해 들어가 PZT박막에 산소 공공을 만들어 내기 때문이다. Pt의 촉매 작용이 없이는 수증기의 수소 원자로의 분해가 어려우므로 Pt 전극이 덮여져 있지 않는 PZT 박막은 강유전 특성이 저하되지 않는다. 이러한 강유전 특성의 저하는 산소 분위기의 RTA(rapid thermal annealing)처리에 의해 회복이 되었다. 한편, 누설전류 특성은 Pt 상부 전극의 증착온도가 증가함에 따라 향상되는 특성을 보였다.

  • PDF

Development of 2-inch Plastic Film STN LCD

  • Park, Sung-Kyu;Han, Jeong-In;Kim, Won-Keun;Kwak, Min-Gi
    • Journal of Information Display
    • /
    • 제1권1호
    • /
    • pp.14-19
    • /
    • 2000
  • Due to distinct properties of plastic substrates such as poor thermal resistance, non-rigidness and high thermal expansion, it is difficult to fabricate plastic film LCDs by conventional LCD processes. Poor thermal resistance and high thermal expansion of substrates induced deformation of substrates surface, mismatch of thermal expansion between ITO electrodes and substrates resulted in defects in the ITO electrodes during the high temperature process. Defects of ITO electrodes and non-uniform cell gap caused by non-rigid and flexible properties were also observed in the pressuring process. Based on in these observations, we used a newly developed material and fabrication process to prevent deformation of substrates, defects of electrodes and to maintain uniform cell gap. The maximum temperature of the process is limited up to $110^{\circ}C$ and pressure loaded during the process is five times less than conventional one. With these invented processes and materials, we obtained highly reliable Plastic Film STN LCDs whose electro-optical characteristics are better than or equivalent to those of typical glass LCDs.

  • PDF

Photoelectrochemical Studies of Nanocrystalline TiO₂Film Electrodes

  • Lee, Myoung-Soon;Cheon, Ik-Chan;Kim, Yeong-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1155-1162
    • /
    • 2003
  • Nanocrystalline semiconductor film electrodes have been prepared by sintering three different sizes of TiO₂ nanoparticle sols on conducting indium-tin-oxide (ITO) glass substrate. The electrochemical and photoelectrochemical properties of the prepared electrodes were comparatively investigated. The particle sizes, surface morphologies and crystallinities of the films were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Cyclic voltammetry and capacitance measurements in the dark implies the formation of depletion layer in the semiconductor films which was usually neglected in the previous studies and shows that flat band potential ($E_{fb}$

Effect of SAW-IDT Electrodes Composed of Aluminum-Nickel Composite Thin Films on the Acoustic Performance of SAW Devices

  • Jae-Cheol Park
    • 센서학회지
    • /
    • 제33권5호
    • /
    • pp.353-358
    • /
    • 2024
  • Al-Ni thin films were fabricated using combinatorial sputtering system to realize highly sensitive surface acoustic wave (SAW) devices. The Al-Ni sample library was grown with various chemical compositions and electrical resistivities, which provided important information for selecting the most suitable materials for SAW devices. As acoustic waves generated from piezoelectric materials are significantly affected by the resistivity and density of the interdigital transducer (IDT) electrodes, three types of Al-Ni thin films with different Al contents were fabricated. The thickness of the Al-Ni thin film used in the SAW-IDT electrode was fixed at 100 nm. As the Al content of the Al-Ni film decreased from 79.2 to 24.5 at%, the resistivity increased slightly from 4.8 to 5.8 × 10-5 Ω-cm, whereas the calculated density increased significantly from 3.6 to 6.9 g/cm3. The SAW device composed of Al-Ni IDT electrodes resonated at 71 MHz without frequency shifts; however, the selectivity of the resonant frequency and insertion loss deteriorated as the Al content decreased. When there is no significant difference in the electrical characteristics of the SAW-IDT electrodes, the performance of the SAW devices can be determined by the density of the IDT electrodes.

CNT 습도센서의 플라즈마처리 효과와 선택성 특성 (Plasma Process Effect and Selectivity Characteristics of Carbon Nanotube Film Humidity Sensor)

  • 박찬원
    • 산업기술연구
    • /
    • 제33권A호
    • /
    • pp.67-72
    • /
    • 2013
  • CNT(carbon nanotube) humidity sensors with plasma treated electrodes exhibit a much faster response time and a higher sensitivity to humidity, compared to untreated CNT and porous Cr electrodes. These results may be partially due to their percolated pore structure being more accessible for water molecules and for expending the diffusion of moisture to the polyimide sensing film, and partially due to the oxygenated surface of CNT films. This paper shows a plasma process effect and selectivity characteristics of CNT film humidity sensor.

  • PDF

탄소 전극 형상 변화에 따른 전기화학 커패시터 특성 향상 (Improvement of Electrochemical Characteristics by Changing Morphologies of Carbon Electrode)

  • 민형섭;김상식;정덕수;최원국;오영제;이전국
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.544-549
    • /
    • 2009
  • Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m$^2$/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm$^2$.

Metal Nano Particle modified Nitrogen Doped Amorphous Hydrogenated Diamond-Like Carbon Film for Glucose Sensing

  • Zeng, Aiping;Jin, Chunyan;Cho, Sang-Jin;Seo, Hyun-Ook;Lim, Dong-Chan;Kim, Doo-Hwan;Hong, Byung-You;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.434-434
    • /
    • 2011
  • Electrochemical method have been employed in this work to modify the chemical vapour deposited nitrogen doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel and copper nano particle modified N-DLC electrodes. The electrochemical behaviour of the metal nano particle modified N-DLC electrodes have been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano particles on the N-DLC surface have been investigated using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The nickel nano particle modified N-DLC electrode exhibits a high catalytic activity and low background current, while the advantage of copper modified N-DLC electrode is drawn back by copper oxidizations at anodic potentials. The results show that metal nano particle modification of N-DLC surface could be a promising method for controlling the electrochemical properties of N-DLC electrodes.

  • PDF

Investigation of charge injection in organic thin film transistor using ink-jet printed silver electrodes

  • Kim, Dong-Jo;Jeong, Sun-Ho;Lee, Sul;Jang, Dae-Hwan;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.730-732
    • /
    • 2007
  • We fabricated a coplanar type organic thin-film transistors using ink-jet printed silver source/drain electrodes and ${\alpha},{\omega}-dihexylquaterthiophene$ (DH4T) which is an active layer. Use of ink-jet printed silver nanoparticle-based metal electrode assists the energetic mismatch with p-type organic semiconductor via modification of their interfacial properties to enable ohmic contact formation.

  • PDF

Supercapacitor용 PFPT-flyash 전극의 충방전 특성 (Charge/discharge Properties of PFPT-flyash Electrodes for Supercapacitor)

  • 김종욱;위성동;전연수;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.91-94
    • /
    • 2003
  • The purpose of this project is to research and development of thin film supercapacitor with conducting polymer composite electrodes and polymer electrolyte which have high energy density for thin film supercapacitor. We investigated cyclic voltammetry and charge/discharge cycling of PFPT-flyash electrodes. The first discharge capacity of PFPT-flyash electrode with 40wt.% flyash was 24F/g, while that of PFPT-VOflyash electrode with 40wt.% VOflyash was 32F/g. The capacitance of PFPT-VOflyash composite film with polymer electrolyte was 32 F/g at 1st and 20th cycle, respectively. The capacitance of PFPT-VOflyash/Li cell with 40 wt% VOflyash was 141 F/g at 8th cycle.

  • PDF