• 제목/요약/키워드: film growth

Search Result 2,511, Processing Time 0.029 seconds

Surface Characteristics of TiN and ZrN Film Coated STD 61 by Sputtering (스퍼터링법으로 TiN 및 ZrN 피막 코팅된 STD 61의 표면특성)

  • Eun, Sang-Won;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.6
    • /
    • pp.260-265
    • /
    • 2010
  • STD 61 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness, and creep strength as well as excellent oxidation resistance. The STD 61 tool steel coated with TiN and ZrN by sputtering results in improvement of wear and corrosion resistance. In this study, surface characteristics of TiN and ZrN film coated STD 61 by sputtering were studied by using FE-SEM, EDS, XRD, and XRR and nanoindentation tests. From the results of surface characteristics of coated specimen, the ZrN coated surface showed finer granular than that of TiN coated surface. The coated layer structures of ZrN and TiN were grown to (111) and (200) preferred orientation. From the results of XRR test for surface roughness, density and growth rate of coating film, surface roughness and growth rate of ZrN coated film revealed lower values those of TiN coated film, whereas density of ZrN coated film showed higher values than that of TiN coated film. From the nanohardness and elastic modulus test, nanohardness value and elastic modulus of ZrN coated film became higher than those of TiN coated film.

ZnO film growth on sapphire substrate by RF magnetron sputtering (RF 스퍼터링 법에 의한 사파이어 기판상의 ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.215-219
    • /
    • 2004
  • ZnO epitaxial films have been grown on a (0001)sapphire substrate by RF magnetron sputtering. The single crystalline ZnO films were grown at the condition of growth rate of about 0.1~0.2 $\mu\textrm{m}$/hr and the substrate temperature of $600^{\circ}C$. The film thickness was about 400~500 nm. The thin film quality and micro-structure have been evaluated by XRD and TEM observation.

Growth studies of chromium thin films using real-time spectroscopic ellipsometry (실시간 분광 엘립소미트리를 이용한 크롬 박막의 성장연구)

  • 이용달;정지용;방경윤;오혜근;안일신
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.327-332
    • /
    • 1999
  • High speed real-time spectroscopic ellipsometry was employed in order to characterize the growth of chromium thin film. This instrument can collect 512 points of {$\Delta$(hv), $\Psi$(hv)} spectra from 1.3 to 4.5 eV with acquisition and repetition rates of 20 msec or less. When this instrument was integrated into the chromium thin film growth, we could obtain not only the information on film properties but also the details of the processes. We deduced the growth rates and the evolution of the optical properties of chromium thin films under several preparation conditions. We also demonstrated the contamination process of chromium thin films caused by air exposure.

  • PDF

Ambient Oxygen Effects on the Growth of ZnO Thin Films by Pulsed Laser Deposition

  • Park, Jae-Young;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.303-307
    • /
    • 2007
  • ZnO thin films were prepared by pulsed laser deposition on amorphous fused silica substrates at different ambient $O_2$ pressures varying from 0.5 to 500 mTorr, to observe the effect of ambient gas on their crystalline structure, morphology and optical properties. Results of X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence studies showed that crystallinity, surface features and optical properties of the films significantly depended on the oxygen background pressure during growth. A low oxygen pressure (0.5 mTorr) seems to be suitable for the growth of highly c-axis oriented and smoother films possessing a superior luminescent property. The films grown at the higher $O_2$ pressures (50-500 mTorr) were found to have many defects probably due to an excessive incorporation of oxygen into ZnO lattice. We speculate that the film crystallinity could be affected by the kinetics of atomic arrangement during deposition at the higher oxygen pressures.

Epitaxial Growth of $NdF_3:Er^{3+}/CaF_2(111)$ by MBE

  • Ko, J.M.;Fukuda, T.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.71-74
    • /
    • 1998
  • $Er^{3+}$ doped $NdF_{3}$ single crystalline thin films with smooth, microcrack-free, and high-crystalline quality were grown on $CaF_{2}(111)$ substrate at $500^{\circ}C$by molecular beem epitaxy(MBE). The relation-ship between subcell and supercell showing the reconstructed $3^{1/2} \times 3^{1/2}$ structure was studied by reflection high-energy electron diffraction(RHEED) investigation. The film surface and the growth mode were examined in studied by RHEED patterns and atomic force microscope(AFM) images ex situ. The crystallinity of film and the lattice mismatch between $NdF_{3}Er}^{3+}(0002)$ film and $CaF_{2}(111)$ substrate depending in the $Er^{3+}$ concentration were investigated by X-ray rocking curve analysis.

  • PDF

Effects of Oxygen Addition on the Growth Rate and Crystallinity in Diamond CVD (다이아몬드 CVD에서 산소혼입이 증착속도 및 결정성에 미치는 영향)

  • 서문규;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.401-411
    • /
    • 1990
  • Deposition of diamond films on Si(100) from the mixtures of methane and hydrogen were investigated using hot W filament CVD method. The nucleation density could be increased thousandfold by surface treatment with SiC powder. Upon oxygen addition to the mixture, crystal facets became developed more clearly by selectively removing non-diamond carbons, but the film growth rate generally decreased. However, at a very high methane content(e.g. 10%), a small amount of oxygen addition has resulted in an increase in the film deposition rate presumably by promotion of methane decomposition. When the gas pressure was varied, the growth rate exhibited a maxiumum at around 20torr and the film crystallinity steadily improved with the pressure increase. The observed variation of the growth rate by oxygen addition was discussed in terms of its role in the pyrolysis and the subsequent gas phase reactions.

  • PDF

Study on Anomalous Scaling Exponents for Molecular Thin Film Growth Using Surface Lateral Diffusion Model

  • Gong, Hye-Jin;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2237-2242
    • /
    • 2011
  • Anomalous scaling behaviors such as significantly large growth exponent (${\beta}$) and small reciprocal of dynamic exponent (1/z) values for many molecular crystalline thin films have been reported. In this study, the variation of scaling exponent values and consequent growth behaviors of molecular thin films were more quantitatively analysed using a (1+1)-dimensional surface lateral diffusion model. From these simulations, influence of step edge barriers and grain boundaries of molecular thin films on the various scaling exponent values were elucidated. The simulation results for the scaling exponents were also well consistent with the experimental data for previously reported molecular thin film systems.

Vapor deposition and characterization of parylene films

  • Kim, Eui-Jung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.16-23
    • /
    • 1999
  • Deposition of parylene (PA) films has been explored at substrate temperatures below 2$0^{\circ}C$ and pressures below 4 torr. The film thickness was measured using AFM and the film thickness measured was 3,500-12,000$\AA$ and the growth rate was 20-70$\AA$/min. T도 dielectric constant of the deposited PA films was found to be 2.66 and the dielectric strength was in excess of 2$\times$105V/cm. The growth rate became a maximum at a precursor decomposition temperature of $600^{\circ}C$. It was found that the growth rate decreased with increasing substrate temperature, whereas it increased with increasing pressure. At a precursor decomposition temperature of 75$0^{\circ}C$ or at a deposition pressure above 1 Torr the film surface became rough due to particle formation in the gas phase. The condensation of a p-xylylene monomer on the substrate surface turned out to be a rate-limiting step in the growth of the PA films.

  • PDF

Effects of Deposition Temperature on the Properties of InN Thin Films Grown by Radio-frequency Reactive Magnetron Sputtering (증착 온도가 RF 반응성 마그네트론 스퍼터링법으로 성장된 InN 박막의 특성에 미치는 영향)

  • Cho, Shin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.808-813
    • /
    • 2009
  • Indium nitride thin films were deposited by the radio-frequency reactive magnetron sputtering method. The indium target was sputtered by the mixture flow ratio of $N_2$ to Ar, 9:1. The effects of growth temperature on the structural, optical, and electrical properties of the films were investigated. With increasing the growth temperature, the crystallinity of the films was improved, and the crystalline size was increased. The energy bandgap for the film grown at $25^{\circ}C$ was 3.63 eV, and the bandgap showed an increasing tendency on the growth temperature. The carrier concentration, Hall mobility and electrical resistivity of the films depended significantly on the growth temperature and the maximum Hall mobility of $32.3\;cm^2$/Vsec was observed for the film grown at $400^{\circ}C$.

A Study on the Growth of ZnGa$_2$O$_4$ Thin Film Phosphors (ZnGa$_2$O$_4$ 박막형광체 성장에 관한 연구)

  • 정영호;김영진
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.145-150
    • /
    • 1998
  • ZnGa2O4 thin film phosphors were deposited on Si(100) (111) wafers by rf magnetron sputtering. The ef-fects of substrates and deposition parameters on the growing mechanisms were studied. As a results of the effect of substrate temperature tranistions of growth orientation and different growing behaviors were ob-served. Also polycrystalline ZnGa2O4 thin film could not be achieved without oxygen gas. PL spectrum of ZnGa2O4 thin films were analyzed and showed broad band luminescence spectrum.

  • PDF