• Title/Summary/Keyword: film dosimetry

Search Result 162, Processing Time 0.034 seconds

Measurement of Proton Beam Dose-Averaged Linear Energy Transfer Using a Radiochromic Film

  • Seohyeon An;Sang-il Pak;Seonghoon Jeong;Soonki Min;Tae Jeong Kim;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Purpose: Proton therapy has different relative biological effectiveness (RBE) compared with X-ray treatment, which is the standard in radiation therapy, and the fixed RBE value of 1.1 is widely used. However, RBE depends on a charged particle's linear energy transfer (LET); therefore, measuring LET is important. We have developed a LET measurement method using the inefficiency characteristic of an EBT3 film on a proton beam's Bragg peak (BP) region. Methods: A Gafchromic EBT3 film was used to measure the proton beam LET. It measured the dose at a 10-cm pristine BP proton beam in water to determine the quenching factor of the EBT3 film as a reference beam condition. Monte Carlo (MC) calculations of dose-averaged LET (LETd) were used to determine the quenching factor and validation. The dose-averaged LETs at the 12-, 16-, and 20-cm pristine BP proton beam in water were calculated with the quenching factor. Results: Using the passive scattering proton beam nozzle of the National Cancer Center in Korea, the LETd was measured for each beam range. The quenching factor was determined to be 26.15 with 0.3% uncertainty under the reference beam condition. The dose-averaged LETs were measured for each test beam condition. Conclusions: We developed a method for measuring the proton beam LET using an EBT3 film. This study showed that the magnitude of the quenching effect can be estimated using only one beam range, and the quenching factor determined under the reference condition can be applied to any therapeutic proton beam range.

Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy (고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구)

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.290-297
    • /
    • 2009
  • In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

  • PDF

Comparison of Linac-based VMAT Stereotatic Radiosurgery and Conventional Stereotatic Radiosurgery for Multiple Brain Lesions (Linac 기반 VMAT 정위적 수술 뇌 병변 연구와 기존의 정위적 방사선 수술 비교)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • Portal Dosimetry was verified using EPID to secure the clinical application and reliability of the existing research dose evaluation. The dose distribution of Geant4 was compared with the measured value by 360° rotational irradiation with a 2.5 cm cone for stereotactic brain surgery. To confirm the dose distribution of patients with brain metastasis, the dose distribution investigated by inserting a Gafchromic EBT film into the parietal phantom and the dose distribution obtained from the parietal phantom using VMAT are compared and applied to actual patients. As a result of the analysis, it was confirmed that the accuracy of the beam center and the center of the couch coincide accurately with an error within 1mm as a result of QA through a pin ball. In addition, it was confirmed that the EBT3 film has excellent linearity in the range of 0 to 10 Gy according to various dose irradiation. In the same setting as the two cervical phantoms, we confirm that the implementation and simulation results calculations of dose calculations based on Geant4 using photon beams match the experimental data within the treatment planning volume (PTV). Therefore, volume modulated arc treatment (VMAT) 360° rotational irradiation was performed, and the result of iso-dose distribution analysis by rotational irradiation confirmed that it is appropriate to include a virtual tumor.

Evaluation of OSLD and EBT3 film for dose, energy, and angular dependence (OSLD와 EBT3 필름의 선량, 에너지, 방향의존성에 대한 평가)

  • Lee, Ju-seong;Kang, Bo-ram;Kwon, Hyeon-Kyung;Park, Ji-Young;Kim, Ju-Hye;Choi, Young-Se;Kim, Daehong
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • A radiation dosimeter is important to assess quality assurance (QA) of radiation therapy devices and to estimate the radiation dose in vivo dosimetry. Recently, optically stimulated luminescence detector (OSLD) is widely used in clinical filed. Therefore, the purpose of this study is to evaluate dose, energy, and angular dependence of OSLD and EBT3 film. The absorbed dose in clinical linear accelerator (Linac) beam is calibrated for dose per monitor unit (MU). Dose, energy, and angular dependence of OSLD and EBT3 film are estimated after the calibration procedure. The absorbed dose is measured at 50, 100, 150, and 200 cGy in an 6 MV X-ray beam for dose dependence. A dose of 150 cGy is delivered to OSLD and EBT3 film with 6 and 10 MV photon energies for energy dependence. For measurements of angular dependence, angular positions of gantry are $0^{\circ}{\pm}80^{\circ}$ with 6 MV at 150 cGy. The results of dose dependence is linear for OSLD and EBT3 film. For the results of energy dependence, errors were 0.39% and 0.03% for OSLD and EBT3 film, respectively. The results of dose for angular is decreased from $0^{\circ}$ to ${\pm}80^{\circ}$ for both OSLD and EBT3 film. When angle of $0^{\circ}$ is normalized to 1, and the dose is decreased to 60 and 66% at $80^{\circ}$ for OSLD and EBT3 film, respectively. Dose and energy dependence of OSLD and EBT3 film are measured within the recommendation of manufacturer. Angular dependence is increased from $0^{\circ}$ to ${\pm}80^{\circ}$ for OSLD and EBT3 film. The characteristics of OSLD and EBT3 film are similar and expected to useful for clinical field.

A Study on Dose Distribution of Electron Beams by Semiconductor Detector (반도체 검출기에 의한 전자선 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.19-25
    • /
    • 1984
  • There is not yet an universal method of electron dosimetry. The Authors measured dose distributions of the electron beams from Clinac-18 by means of silicon detector connected to X-Y recorder, and compared them in water phantom with dose distributions measured by film and ion chamber, both inserted in polystyrene phantom. The results are as followings, 1. Dose in build-up region increased with the field size for all energy, and depth dose profiles of $6{\sim}12MeV$ beam under the depth of maximum dose were independent of field size, but those of 15 and 18 MeV beam were dependent on the field size. 2. The widths of penumbra by semiconductor detector were narrower than those by film for same energy beam. 3. Depth dose profiles by three different dosimeter did not coincide each other. In the build-up region, dose by semiconductor detector was lower than that by any other dosimeter.

  • PDF

Development of Dose Evaluation Algorithm for Film Badge Using ISO Reference Radiations (ISO 표준방사선장을 이용한 필름배지의 선량평가 알고리즘 개발)

  • Kim, Jang-Lyul;Chang, Si-Young;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • Since provisions on the technical criteria for personnel dosimetry was amended three years ago, several improvements in the technique of monitoring personnel doses by TLD have taken place, but for the photograpfic film as a personnel monitor, additional investigations should be carried out for its accuracy of dose estimates because of its wide use in the radiation involved industries. So, this paper describes the methods to develope dose evaluation algorithm for photographic film using ISO reference radiations by i) empirical formula, ii) degree-of-fit method, and iii) matrix approximation. These methods show a good agreement between irradiated and calculated dose within tolerance level represented in ANSI N13. 11, and can be used for the dose evaluation of X, ${\gamma}$ and/or radiation fields.

  • PDF

Linear Energy Transfer Dependence Correction of Spread-Out Bragg Peak Measured by EBT3 Film for Dynamically Scanned Proton Beams

  • Lee, Moonhee;Ahn, Sunghwan;Cheon, Wonjoong;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.135-144
    • /
    • 2020
  • Purpose: Gafchromic films for proton dosimetry are dependent on linear energy transfers (LETs), resulting in dose underestimation for high LETs. Despite efforts to resolve this problem for single-energy beams, there remains a need to do so for multi-energy beams. Here, a bimolecular reaction model was applied to correct the under-response of spread-out Bragg peaks (SOBPs). Methods: For depth-dose measurements, a Gafchromic EBT3 film was positioned in water perpendicular to the ground. The gantry was rotated at 15° to avoid disturbances in the beam path. A set of films was exposed to a uniformly scanned 112-MeV pristine proton beam with six different dose intensities, ranging from 0.373 to 4.865 Gy, at a 2-cm depth. Another set of films was irradiated with SOBPs with maximum energies of 110, 150, and 190 MeV having modulation widths of 5.39, 4.27, and 5.34 cm, respectively. The correction function was obtained using 150.8-MeV SOBP data. The LET of the SOBP was then analytically calculated. Finally, the model was validated for a uniform cubic dose distribution and compared with multilayered ionization chamber data. Results: The dose error in the plateau region was within 4% when normalized with the maximum dose. The discrepancy of the range was <1 mm for all measured energies. The highest errors occurred at 70 MeV owing to the steep gradient with the narrowest Bragg peak. Conclusions: With bimolecular model-based correction, an EBT3 film can be used to accurately verify the depth dose of scanned proton beams and could potentially be used to evaluate the depth-dose distribution for patient plans.

The evaluation of usefulness of Electronic Portal Imaging Device(EPID) (Electronic Portal Imaging Device(EPID)의 유용성 평가)

  • Lee, Yang-Hoon;Kim, Bo-Kyoum;Jung, Chi-Hoon;Lee, Je-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.19-31
    • /
    • 2005
  • Purpose : To supply the information of EPID system and to analyze the possibility of substitution EPID for film dosimetry. Materials & Methods : With amorphous silicon(aSi) type EPID and liquid filled lonization chamber(LC) type EPID, the reproducibility according to focus detector distance(FDD) change and gantry rotation was analyzed, and also the possible range of image acquisition was analyzed with Alderson Rando phantom. The resolution and the contrast of aSi type EPID image were analyzed through Las Vegas phantom and water phantom. DMLC image was analyzed with X-Omat V film and EPID to see wether it could be applied to the qualify assurance(QA) of IMRT. Results : The reproducibility of FDD position was within 1mm, but the reproducibility of gantry rotation was ${\pm}2,\;{\pm}3mm$ respectively. The resolution and the contrast of EPID image were affected by dose rate, image acquisition time, image acquisition method and frame number. According to the possible range of image acquisition of EPID, it is verified that the EPID is easier to use than film. There is no difference between X-Omat V film and EPID images for the QA of IMRT. Conclusion : Through various evaluation, we could obtain lots of useful information about the EPID. Because the EPID has digital data, also we found that the EPID is more useful than film dosimerty for the periodical Qualify Assurance of IMRT. Especially when it is difficult to do point dose measurement with diode or ionization chamber, the EPID could be very useful substitute. And we found that the diode and ionization chamber are difficult to evaluate the sliding window images of IMRT, but the EPID was more useful to do it.

  • PDF

Neutron Dosimetry with Solid State Track Detector (고체비적검출기(固體飛跡檢出器)를 이용(利用)한 중성자선량(中性子線量) 측정(測定))

  • Yook, Chong-Chul;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1977
  • A base of photographic posi-film which is commecially available has been found to be a possible alpha-particle track detector. Its neutron dosimetric characteristics, i. e., alpha-particle track registrating efficiency and optimum condition of track formation by chemical etching, have been determined experimentally. The range of neutron fluence and dose capable of being measured by a neutron dosimeter consisting of alpha-particle radiator foils $(^{10}B\;and\;^{27}Al)$ and posi-flim solid state track detector, has been estimated on the basis of experimental results and theoryetical background. This detector seems to be useful for neutron dosimetry because of many favorable properties, i. e., simplicity, cheapness and a wide range of sensitivitiy.

  • PDF

Comparison on the Dosimetry of TLD and OSLD Used in Nuclear Medicine (광자극발광선량계와 열형광선량계를 이용한 핵의학과 선량 측정비교)

  • Lee, Wang-Hui;Kim, Sung-Chul;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.329-334
    • /
    • 2012
  • For the dosimetry of the radiation workers, film badge, Thermo Luminescent Dosimeter (TLD), and glass dosimeter are being used and recently, there is a growing trend of using Optically Stimulated Luminescence Dosimeter (OSLD) in the world. However, OSLD is only being applied some of the field in Korea and there has been almost no study made related to OSLD. Thus, the accumulated radiation dose of TLD and OSLD that have been most frequently used in the field was compared in the radiation workers of nuclear medicine and their working areasfor 3 months. As a result, the average surface dose showed 0.85 mSv difference with 1.27 mSv for TLD and 2.12 mSv for OSLD while having 0.73 mSv difference for the average depth dose with 1.33 mSv for TLD and 2.06 mSv for OSLD. The surface dose and depth dose of OSLD showed statistically significant result with higher measurement (p<0.05).