• Title/Summary/Keyword: filling-in

Search Result 3,660, Processing Time 0.031 seconds

Effect of Plant Growth Regulators on Grain Fill in vitro Culture of Rice Panicle

  • Lee, Seung-Hun;Lee, Ho-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • In vitro culture of panicle has been the method to accumulate starch and protein in immature grains by providing nutrients after florets crossed between remote genotypes artificially. Grain filling means embryo development and sucrose translocation from photosynthetic source, and starch manufacture in endosperm. The concentrations of sucrose used to culture immature rice panicle were 5, 10, 15, 20% and glutamine was 20 mM. When immature rice panicles at 5 days after flowering were cultured in distilled water with different concentrations of sucrose, glutamine 20 mM and MS medium with different concentrations of sucrose, glutamine 20 mM for 30 days the later was effective on grain filling. The optimal concentration of sucrose on grain filling in vitro culture of rice panicle was 10% and the weight of grain cultured was 10.14 mg that was corresponded to 57% of intact plant. In the method of treating plant growth regulators, the culture of immature rice panicle adding in MS medium with Kinetin, IAA, $\textrm{GA}_3$ were effective on grain filling than the culturing of immature rice panicle after submerging in solutions of Kinetin, IAA, $\textrm{GA}_3$ for 1day. When immature rice panicle was cultured in MS medium with sucrose 10% and Kinetin 46.47 $\mu$M it was effective on grain filling, respectively. The weight of grain cultured was 13.1mg that was corresponded to 75% of intact and germination rate was 51 %. When immature rice panicles were cultured in medium with different concentrations combined with Kinetin 4.65, 46.47, 464.7 $\mu\textrm{M}$, IAA 5.71, 57.08, 570.80 $\mu\textrm{M}$ for 30 days and in medium with IAA 5.71, 57.08, 570.80 $\mu\textrm{M}$ for 15 days after culturing in medium with Kinetin 4.65, 46.47, 464.70 $\mu\textrm{M}$ for 15 days the effect on grain filling was similar.

TSV Filling Technology using Cu Electrodeposition (Cu 전해도금을 이용한 TSV 충전 기술)

  • Kee, Se-Ho;Shin, Ji-Oh;Jung, Il-Ho;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2014
  • TSV(through silicon via) filling technology is making a hole in Si wafer and electrically connecting technique between front and back of Si die by filling with conductive metal. This technology allows that a three-dimensionally connected Si die can make without a large number of wire-bonding. These TSV technologies require various engineering skills such as forming a via hole, forming a functional thin film, filling a conductive metal, polishing a wafer, chip stacking and TSV reliability analysis. This paper addresses the TSV filling using Cu electrodeposition. The impact of plating conditions with additives and current density on electrodeposition will be considered. There are additives such as accelerator, inhibitor, leveler, etc. suitably controlling the amount of the additive is important. Also, in order to fill conductive material in whole TSV hole, current wave forms such as PR(pulse reverse), PPR(periodic pulse reverse) are used. This study about semiconductor packaging will be able to contribute to the commercialization of 3D TSV technology.

A Study on the Filling Imbalance of Polyamide Molding by Taguchi Method (다구찌 방법을 이용한 폴리아미드 성형품의 충전 불균형에 관한 연구)

  • Han, Kyu-Taek;Jeong, Yeong-Deug;Goo, Yang;Kim, Byung-Tak;Kim, Hyung-Je;Han, Seong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.95-100
    • /
    • 2004
  • Plastics is used to produce precise parts with an inclusion of a reinforcement material such as glass fiber or carbon fiber to improve the dimension accuracy. The plastic goods can be produced with inaccurate dimensions, low mechanical strength, or residual stress due to the over packing of cavity inside, if the filling balance of melt resin is not accomplished. To overcome this problem, it is necessary to design the runner system with the geometrical balance at the mold design stage. However, even if the balanced runner system is achieved, a severe filling imbalance is observed practically in a multi-cavity mold. In this study, experiments were performed with Taguchi method to achieve the filling balance in multi-cavity mold with a symmetric runner system, by the use of pure PA and PA with glass fiber 33%. The experimental results were investigated to understand the effect of related molding factors on the filling imbalance for two resins.

  • PDF

Studies on the Thermal Insulation Effect of Bedding ( I ) - Warmth Retaining Property of Filling Material - (이부자리의 보온력에 관한 연구( I ) -충전물의 보온성 -)

  • Lee Song-Ja;Sung Su-Kwang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.3 s.43
    • /
    • pp.251-256
    • /
    • 1992
  • As a basic expriment to find out the thermal insulation effect of bedding KES-F7 was used to measure. The warmth retaining ratio of the six kinds of filling materials as cotton, wool , silk, down, cotton/polyester was measured, and the infleunce on the warmth retaining ratio of the warmth retaining ratio and humidity by the material was investigated. The results obtained are as follows: 1. The warmth retaining ratio of each filling material was shown to range from $70\%$ to $77\%$ . The warmth retaining ratio of each material preyed to be high in order down> polyester> cotton/polyester>cotton>silk>wool fiber. 2. The warmth retaining ratio of each filling material decreased with the inclose of the humidity The effective reduction rate by filling fiber's was high in order wool>cotton>cotton/polyester>silk>down>polyester material. 3. The warmth retaining ratio of each filling material was shown to be in counter-correlation with the humidity, and the correlation coefficient (r=0.94-0.98) proved to be highly signi-ficant.

  • PDF

Comparison of Results for Filling Operation of Liquid Oxygen Filling System in KSLV-I Flight Test and Critical Design Results in KSLV-II Launch Complex for Validation (한국형발사체 발사대시스템 산화제공급계 충전 운용 설계의 검증을 위한 나로호 비행시험 실증 자료 분석)

  • Seo, Mansu;Lee, Jae Jun;Hong, Il-gu;Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.14-20
    • /
    • 2017
  • In this paper, KSLV-I flight test data and critical design results of filling operation for liquid oxygen filling system are compared to validate the reliability of the critical design modeling. Applying the filling and operation conditions on the critical design modeling, comparison of major flow rates and pressure values between test data and calculation results are conducted.

  • PDF

Finite element analysis of casting processes considering molten-metal flow and solidification (용탕유동과 응고를 고려한 주조공정의 유한요소해석)

  • Yoon, Suck-Il;Kim, Yong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.110-122
    • /
    • 1996
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting process consists of mold filling and solidification. Both filling and solidication process were simulated simultaneously to investigate the effects of process variables and to predict the defect. At filling process, thermal coupling was especially considered to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simullation of the actual casting processes. At mold filling process, Lagragian-type finite element method with automatic remeshing scheme was used to find the material flow. A perturbation method with artificial viscosity is adopted to avoid numerical instability in low viscous fluid. At solidification process, enthalpy-based finite element method was used to solove the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidification time, position of solidus line, liquidus line and thermal residual stress are found. Through the study, the importance of combined analysis has been emphasized. Finite element tools developed in this study will be used process design of casting process and may be basic structure for total CAE system of castings which will be constructed afterward.

  • PDF

An Experimental Study on Internal Temperature Changes of Type Ⅳ Cylinder according to Filling with Compressed Hydrogen Gas (압축수소가스 충전에 따른 타입 IV 용기의 온도 변화에 관한 실험적 연구)

  • Lee, Seung-Hoon;Kim, Youn-Gyu;Yoon, Kee-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.644-647
    • /
    • 2009
  • In this paper, the study is researched for related safety standards having experiments concerning temperature changes in type IV cylinder of the Hydrogen fuel cell vehicle. Experiments were performed to acquire temperature data of type IV cylinder according to filling time. The experimental results are shown that internal temperatures of type Ⅳ vessel are over $85^{\circ}C$ at all measured points after 5 minutes at filling 35 MPa and the highest temperature is getting lower when the residual gases are more remained. Consequently, the safety standards need properly limited value through further study for filling flow rate and filling time.

  • PDF

Digital Halftoning with Maze Generation Algorithm (미로 생성 알고리즘을 이용한 디지털 하프토닝)

  • Jho, Cheung-Woon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.984-990
    • /
    • 2009
  • Halftoning is very important image processing techniques in the digital printing industry which is a process of converting a continuous-tone image to bi-level tone image. In this paper we introduce a new digital halftoning method based on maze generation algorithm as a replacement algorithm of halftoning with space-filling curve. Previous error-diffusion methods based on space-filling curve suffer from regular pattern artifacts from uniform scan pattern. We use maze generation algorithm to remove this undesirable pattern of space-filling curve method.

  • PDF

Preparation of pore-filling membranes for polymer electrolyte fuel cells and their cell performances (고체 알칼리 연료전지용 음이온 교환 세공충진막의 제조 및 특성)

  • Choi, Young-Woo;Park, Gu-Gon;Yim, Sung-Dae;Lee, Mi-Soon;Yang, Tae-Hyun;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.150-153
    • /
    • 2009
  • Anion exchange polymer electrolyte pore-filling membranes consisting of the whole hydrocarbon materials were prepared by photo polymerization with various quaternary ammonium cationic monomers and characterized on the properties for applying to solid alkali fuel cell (SAFC). Hydrocarbon porous substrates such as polyethylene were used for the preparation of the pore-filling membranes. The hydroxyl ion conductivity of the polymer electrolyte membranes prepared in this research was dependent on the composition ratio of an electrolyte monomer and crosslinking agents used for polymerization. Furthermore, these pore-filling membranes have commonly excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lower fuel crossover through the membranes, and easier preparation process than those of traditional cast membranes.

  • PDF

Analysis of Three Dimensional Mold-Filling Process in Injection Molding (사출성형의 3차원 충전공정 해석)

  • Choi K. I.;Koo B. H.;Cha B. S.;Park H. P.;Rhee B. O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.269-272
    • /
    • 2005
  • For the three decades, the mold-filling of injection molding process was modeled as Hele-Shaw model. However, this model can not consider the 3D effect. In this paper, numerical simulations of three dimensional mold-filling during the filling phase were performed. The governing equations were discretized by segregated finite element method, which used equal order interpolation for pressure and velocity fields. The iterative linear equation solver (JCG, SOR) was employed for the solution of the momentum and pressure equations. Volume of Fluid (VOF) was employed for the melt front advancement. To check the validity of the numerical results, the results were compared with the experimental ones. The agreements between the experiment and the numerical results were found to be satisfactory.

  • PDF