• Title/Summary/Keyword: filler-rubber interaction

Search Result 35, Processing Time 0.027 seconds

Effect of Ground Rubber on Mechanical Properties of EPDM Foam (EPDM 발포체의 가황거동 또 기계적물성에 미치는 분쇄고무의 영향)

  • Lim, J.C.;Lim, H.S.;Seo, K.H.
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.132-137
    • /
    • 2000
  • The cure and physical properties of EPDM foam containing ground rubber and carbon black as filler were studied. The cure time reduced with the addition of filler. This result means reducing the operation time. In case of ground rubber was used, blowing ratio, tensile strength, and elongation were decreased rapidly at above 30 phr. On the other hand, in case of carbon black, they showed similar physical properties until 70 phr was used limited to 30 phr to make a good foam, which should be due to low interfacial interaction between EPDM and ground rubber. All the EPDM foams showed excellent thermal stability.

  • PDF

Effect of Silica Contents on the Vulcanizates Structure and Physical Properties in ENR/BR Blend Compounds

  • Sanghoon Song;Junhwan Jeong;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • As regulations on greenhouse gas emission have strengthened globally, the demand for improved fuel efficiency in automobiles continues to rise. In response, the tire industry is actively conducting research to improve fuel efficiency by enhancing tire performance. In this study, silica-filled epoxidized natural rubber (ENR)/butadiene rubber (BR) blend compounds were manufactured according to ENR types and silica contents, and their physical properties and vulcanizate structure were evaluated. ENR-50, which has a higher epoxide content than ENR-25, exhibited stronger filler-rubber interaction, resulting in superior abrasion resistance. In addition, because of its high glass transition temperature (Tg), the wet grip performance of ENR-50 improved, even though the rolling resistance increased. Increasing the amount of silica had little effect on the abrasion resistance due to the increase in filler-rubber interaction and decrease in toughness. In addition, ENR-50 exhibited better wet grip performance; however, the rolling resistance increased. The results indicated that truck bus radial (TBR) tire tread compounds can be designed by applying ENR-50 to improve wear resistance and wet grip performance. In addition, by applying ENR-25 and reducing the silica contents improve fuel efficiency.

Wear Particulate Matters and Physical Properties of ENR/BR Tread Compounds with Different Ratio of Silica and Carbon Black Binary Filler Systems

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.234-242
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, the properties of epoxidized natural rubber (ENR) containing a silica-friendly functional group were evaluated by considering it as a base rubber and varying the silica ratio in this binary filler system. The results showed that the wear resistance of the NR/BR blend compound decreased as the silica ratio increased. In contrast, the ENR/BR blend compound exhibited an increase in wear resistance as the silica ratio was increased. In particular, the ENR-50/BR blend compound showed the best wear resistance due to the presence of several epoxide groups. Furthermore, we observed that for tan 𝛿 at 60℃, higher epoxide content resulted in the higher Tg of the rubber, indicating a higher tan 𝛿 at 60℃. On the other hand, it was confirmed that increasing the silica ratio decreased the value of tan 𝛿 at 60℃ in all compounds. In addition, we measured the amount of wear particulate matters generated from the compound wear. These measurements confirmed that in the binary filler system, regardless of the filler type, the quantity of the generated wear particulate matters as the filler-rubber interaction increased. In conclusion, the silica filled ENR/BR blend compound exhibited the lowest generation of wear particulate matters.

Mechanical Properties of Acrylonitrile Functionalized Emulsion SBR/silica Compounds (아크릴로니트릴이 극성기로 도입된 유화중합 SBR/실리카 컴파운드의 기계적 물성)

  • Kim, Dong-Won;Seo, Byeong-Ho;Kim, Hee-Jeong;Paik, Hyun-Jong;Kang, Jong-Won;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.54-64
    • /
    • 2012
  • Acrylonitrile was introduced in the emulsion SBR to increase compatibility between silica and rubber. AN-SBR/silica compounds showed faster vulcanization time and higher delta torque values than SBR 1721/silica compounds because interaction between nitrile group of AN-SBR and silanol group on the silica surface could make hydrogen bond that prevented adsorption of the accelerator on the silica surface, which improved the vulcanization reaction efficiency and enhanced the degree of crosslinking. AN-SBR/silica compound showed higher values in minimum torque than SBR 1721/silica compound during the vulcanization because AN-SBR has higher molecular weight than SBR 1721 in the raw material. When PEG was added to the SBR 1721 and AN-SBR compounds, vulcanization time was faster than SBR 1721 and AN-SBR compounds without PEG because PEG has a large number of ether linkages which show high compatibility with silanol group on the silica surface that prevented the adsorption of the accelerator and the ingredients on the silica surface, which improved the vulcanization reaction efficiency. In the mechanical properties, AN-SBR compounds showed higher modulus values at 100%, 300% than SBR 1721 compounds because interaction between nitrile group of AN-SBR and silanol group on the silica surface enhanced the degree of crosslinking. In the dynamic properties, AN-SBR compounds showed lower tan ${\delta}$ values at $0^{\circ}C$ than SBR 1721 compounds in accordance with the $T_g$ values. AN-SBR compounds showed lower tan ${\delta}$ values at $60^{\circ}C$ than SBR 1721 compounds because interaction between acrylonitrile and silica caused strong filler-rubber interaction that induced low energy dissipation by the filler-filler interaction.

Improvement of Abrasion and Debris on Styrene-Butadiene-Styrene Block Copolymer with Carboxylated SBR Latex and Zinc Oxide (카르복실화 SBR 라텍스와 산화아연을 이용한 SBS의 내마모성과 데브리스(debris) 개선 연구)

  • Lee, Jin Hyok;Bae, Jong Woo;Kim, Jung Su;Yoon, Yoo-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we observed the effect of carboxylated SBR latex and zinc oxide on styrene-butadiene-styrene( SBS) composites for improving abrasion and debris. SBS composite, which added only silica, showed poor mechanical properties, NBS abrasion, and debris, caused by strong filler-filler interaction of silica. In case of adding carboxylated SBR latex, mechanical properties, NBS abrasion and debris of SBS composite were improved. Because of carboxyl group of carboxylated SBR latex interacted with silanol group of silica. Both carboxylated SBR latex and zinc oxide were added, SBS composite showed highest mechanical properties, NBS abrasion, and debris by forming ion cluster between carboxylated SBR latex and zinc oxide. By FT-IR analysis, ion clusters were confirmed that observed zinc carboxylated group stretch peak at $1550{\sim}1650cm^{-1}$ range. SBS composite, SC-4, showed excellent mechanical properties ; tensile strength $156kgf/cm^2$, elongation 936%, tear strength 59.4kgf/cm ; and excellent abrasion characteristics ; NBS abrasion 338%. Also, debris of SC-4 was minimized and showed wave-shape in fracture surface.

Influence of Blending Method on the Generation of Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Sanghoon Song;Junhwan Jeong;Jin Uk Ha;Daedong Park;Gyeongchan Ryu;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Because particulate matter has emerged as a major contributor to air pollution, the tire industry has conducted studies to reduce particulate matters from tires by improving tire performance. In this study, we compared the conventional blending method, in which rubber, filler, and additives are mixed simultaneously, to the Y-blending method, in which masterbatches are blended. We manufactured carbon black (CB)-filled natural rubber (NR)/butadiene rubber (BR) blend and silica-filled epoxidized NR/BR blend compounds to compare the effects of the two blending methods on the physical properties of the compounds and the amount of particulate matter generated. The Y-blending method provided uniform filler distribution in the heterogeneous rubber matrix, improved processability, and exhibited low rolling resistance. This method also improved physical properties owing to the excellent filler-rubber interaction. The results obtained from measuring the generation of particulate matter indicated that, the Y-blending method reduced PM2.5 particulate matter generation from the CB-filled and silica-filled compounds by 38% and 60%, and that of PM10 by 29% and 67%, respectively. This confirmed the excellence of the Y-blending method regarding the physical properties of truck bus radial tire tread compounds and reduced particulate matter generated.

Analytical Techniques for Measurement of Crosslink Densities of Rubber Vulcanizates

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • It is important to analyze crosslink densities of rubber articles because the physical properties are dependent on the crosslink densities. In this paper, analytical techniques for the measurement of crosslink densities of rubber vulcanizates are described. The most widely used method to measure the crosslink density is a swelling method combined with the Flory-Rehner equation. Application of the interaction parameter (${\chi}$) of rubber and swelling solvent is critical because the crosslink density is absolutely dependent on the ${\chi}$ value. Methods for obtaining ${\chi}$ employ not only solubility parameters of the polymer and swelling solvent but also inverse gas chromatography (IGC). The solubilities of rubbers can be obtained using micro differential scanning calorimetry (${\mu}DSC$), intrinsic viscosity measurement, and UV-visible spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy has been also used for the measurement of the crosslink density using the $T_2$ relaxation time, which is determined by spin-spin relaxation in solid-state NMR. For sulfur-cured rubber vulcanizates, crosslink densities according to the crosslink types of mono-, di-, and polysulfides are measured by treating the rubber samples with a chemical probe composed of thiol and amine compounds. Measurement methods of physical crosslinking by filler, crystallization, and ionic bonding have also been introduced.

The Study on Physical Properties of Rubber Compounds with Silica Doped Carbon Black (실리카가 도핑된 카본블랙을 함유한 고무조성물의 물성에 관한 연구)

  • Lee, Seag;Park, Nam-Cook
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.44-51
    • /
    • 1998
  • The purpose of this experiments were investigated on the physical properties of rubber com-pounds containing two types carbon black. Bound rubber and interaction coefficient for com-pounds with pure carbon black were higher than those for the compounds with dual phase carbon black. Slightly higher values in 300% modulus and tensile strength indicated that the ratio of rubber-filler bound to rubber-rubber bound of pure carbon black were higher than those of com-pounds with dual phase carbon black. It was founded that dynamic properties, that is rebound, heat build-up, 0 & $60^{\circ}C$ tan $\delta$, and cut and chip loss of compounds with dual phase carbon black were better than those of compounds with pure carbon black, but abrasion property of dual phase carbon black was lower than those of pure carbon black because of low reinforcing ability.

  • PDF

Study on the Preparation of Alumina Powders used os a Rubber Filler with a Microwave Extraction System (마이크로파에 의한 고무용 충전제로서의 Alumina Powder의 제조에 관한 연구)

  • Park, Chan-Young;Hwang, Eun-Hee;Han, Seong-Kee
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • Alumina powders used as a filler in rubber compounding was extracted from kaolin in $H_2SO_4$ solution employing conventional thermal and microwave energy resources. Maximum degrees of alumina extraction from kaolin were 72.8% at $80^{\circ}C$, 1M $H_2SO_4$, and 180min in the conventional thermal extraction process and were 99.0% at $90^{\circ}C$, 1M $H_2SO_4$,, and 60min in the microwave extraction one, respectively. The samples synthesized in both processes were analyzed by means of TG/DTA, XRD, SEM, Atomic Emission Spectroscopy, and BET method. Studies are presently under way to unravel the basic interaction mechanisms between microwave and alumina power for high rates of alumina extraction from kaolin in the microwave ex-traction process.

  • PDF

SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo;Lee, Dong-Hyun;Kim, Il-Jin;Son, Min-Jin;Kim, Won-Ho;Cho, Seong-Gyu
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.776-784
    • /
    • 2009
  • N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.