• Title/Summary/Keyword: fill material

Search Result 454, Processing Time 0.022 seconds

System of a Selenium Based X-ray Detector for Radiography (일반촬영을 위한 셀레늄 기반의 엑스선 검출기 시스템)

  • Lee, D.G.;Park, J.K.;Choi, J.Y.;Ahn, S.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.817-820
    • /
    • 2002
  • Amorphous selenium based flat panel detectors convert incident x-ray to electric signal directly. Flat panel detectors gain more interest real time medical x-ray imaging. TFT array and electric readout circuits are used in this paper offered by LG.Philips.LCD. Detector is based on a $1536{\times}1280$ array of a-Si TFT pixels. X-ray conversion layer(a-Se) is deposited upper TFT array with a $400{\mu}m$ by thermal deposition technology. Thickness uniformity of this layer is made of thickness control system technology$({\leq}5%)$. Each $139{\mu}m{\times}139{\mu}m$ pixel is made of thin film transistor technology, a storage capacitor and collecting electrode having geometrical fill factor of 86%. This system show dynamic performance. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system.

  • PDF

Bearing Capacity Characteristics of the Light Weight Method Used Recycled EPS Beads (폐 EPS 입자를 활용한 경량성토공법의 지지력 평가)

  • Lee, Jongkyu;Lee, Bongjik;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.21-29
    • /
    • 2006
  • Light weight filling method prevents settlement of ground by decreasing the weight of fills. This method is increasingly used for it's convenience and workability. Styrofoam is increasingly used as a lightweight filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, increasing the bearing capacity and reducing the settlement. For this study, model test and FEM analysis of bearing capacity is carried out composing two-layered ground with clay in the lower layer and lightweight filling material in upper layer. Based on the results obtained here in this study, it is concluded that the use of recycled EPS beads is acceptable lightweight fill. Light weight fills used for disposal is superior to typical embankment fills in bearing capacity.

  • PDF

Enhanced Electrochemical Properties of Dye-sensitized Solar Cells Using Flexible Stainless Steel Mesh Electrodes with Ti Protective Layer (Ti 보호층이 형성된 스테인레스 스틸 메쉬 전극을 이용한 염료감응형 태양전지의 전기 화학적 특성 개선)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.180-184
    • /
    • 2015
  • Stainless steel (SS) mesh was used to fabricate photoelectrode for flexible dye-seisitzed solar cells (DSSCs) in order to evaluate them as replacements for more expensive transparent conductive oxide(TCO). We fabricated the DSSCs with new type of photoelectrode, which consisted of flexible SS mesh coated with 100 nm thickness titanium (Ti) protective layer deposited using electron-beam deposition system. SS mesh DSSCs with protective layer showed higher efficiency than those without a protective layer. The best cell property in the present study showed the open circuit voltage (Voc) of 0.608 V, short-circuit current density (Jsc) of $5.73mA\;cm^{-2}$, fill factor (FF) of 65.13%, and efficiency (${\eta}$) of 2.44%. Compared with SS mesh based on DSSCs (1.66%), solar conversion of SS mesh based on DSSCs with protective layer improved about 47%.

Modeling of Mechanical Properties of Concrete Mixed with Expansive Additive

  • Choi, Hyeonggil;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.391-399
    • /
    • 2015
  • This study modeled the compressive strength and elastic modulus of hardened cement that had been treated with an expansive additive to reduce shrinkage, in order to determine the mechanical properties of the material. In hardened cement paste with an expansive additive, hydrates are generated as a result of the hydration between the cement and expansive additive. These hydrates then fill up the pores in the hardened cement. Consequently, a dense, compact structure is formed through the contact between the particles of the expansive additive and the cement, which leads to the manifestation of the strength and elastic modulus. Hence, in this study, the compressive strength and elastic modulus were modeled based on the concept of the mutual contact area of the particles, taking into consideration the extent of the cohesion between particles and the structure formation by the particles. The compressive strength of the material was modeled by considering the relationship between the porosity and the distributional probability of the weakest points, i.e., points that could lead to fracture, in the continuum. The approach used for modeling the elastic modulus considered the pore structure between the particles, which are responsible for transmitting the tensile force, along with the state of compaction of the hydration products, as described by the coefficient of the effective radius. The results of an experimental verification of the model showed that the values predicted by the model correlated closely with the experimental values.

An Optimal Restoration Method of Noncarious Cervical Lesions Using Three-Dimensional Finite Element Analysis (3차원 유한요소해석을 이용한 비우식성 치아의 수복 방법)

  • Woo, Sung-Gwan;Kim, Kwang-Hoon;Park, Jeong-Kil;Hur, Bock;Son, Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.112-119
    • /
    • 2007
  • Cavities of Class V are caused by heavy occlusal loads due to bruxism and clenching habit. It is general to restore abfraction lesions with dental filler materials to reduce stress concentration. A material should be selected from various dental products based on long term clinical experiences or personal preference concerning filler methods. A quantitative criterion is necessary to make an evaluation of the results as dentists decide treatment methods and dental materials relying on their clinical experiences. The purpose of this study is to find an optimal restoration method and material for noncarious cervical lesions using the finite element method. An objective function was defined to minimize the sum of tensile and compressive stresses. Several models with different combinations of resins were suggested and compared in terms of the values of objective function. An optimal solution was to fill TetricFlow inside the lesion and Z100 in the remaining region with a thickness ratio of 0.125.

Photovoltaic Properties of Organic Photovoltaic cell (유기물을 이용한 Photovoltaic cell의 광기전력 특성)

  • Kim, S.K.;Lee, H.D.;Chung, D.H.;Oh, H.S.;Hong, J.I.;Park, J.W.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.123-126
    • /
    • 2003
  • Recently, there is a growing concern on the photovoltaic effects using organic materials. This is a phenomena which converts the solar energy into the electrical one. We have fabricated a device structure of $ITO/PEDOT:PSS/CuPc/C_{60}/BCP/AI$. The PEDOT:PSS layer is made by spin coating, and the other organic layers are made by thermal vapor deposition. By measuring the current-voltage characteristics with an illumination of light, we have obtained value of Voc=0.38V, Jsc=$0.5mA/cm^{2}$. And a fill factor and efficiency are about 0.314 and 0.083%, respectively. A 500W xenon lamp(ORIEL) is used for a light source, and the light intensity illuminated into the device was about 10mW.

  • PDF

Fluorine Penetration Characteristics on Various FSG Capping Layers (FSG Capping 레이어들에서의 플루오르 침투 특성)

  • Lee, Do-Won;Kim, Nam-Hoon;Kim, Sang-Yong;Eom, Joon-Chul;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.26-29
    • /
    • 2004
  • High density plasma fluorinated silicate glass (HDP FSG) is used as a gap fill film for metal-to-metal space because of many advantages. However, FSG films can cause critical problems such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. It is known that these problems are caused by fluorine penetration out of FSG film. To prevent it, FSG capping layers such like SRO (Silicon Rich Oxide) are needed. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated. Normal stress and High stress due to denser film. While heat treatment to PETEOS caused lower blocking against fluorine penetration, it had insignificant effect on SiN. Compared with other layers, SRO using ARC chamber and SiN were shown a better performance to block fluorine penetration.

  • PDF

The Patterning of Polyimide Thin Films for the Additive $CF_4$ gas ($CF_4$ 첨가에 따른 polyimide 박막의 패터닝 연구)

  • Kang, Pil-Seung;Kim, Chang-Il;Kim, Sang-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.209-212
    • /
    • 2001
  • Polyimide(PI) films have been considered as the interlayer dielectric materials due to low dielectric constant, low water absorption, high gap-fill and planarization capability. The PI mm Was etched with using inductively coupled plasma (ICP). The etching characteristics such as etch rate and selectivity were evaluated to gas mixing ratio. High etch rate was $8300{\AA}/min$ and vertical profile was approximately acquired $90^{\circ}$ at $CF_{4}/(CF_{4}+O_{2})$ of 0.2. The selectivies of polyimide to PR and $SiO_{2}$ were 1.2, 5.9, respectively. The etching profiles of PI films with an aluminum pattern were measured by a scanning electron microscope (SEM). The chemical states on the PI film surface were investigated by x-ray photoelectron spectroscopy (XPS). Radical densities of oxygen and fluorine in different gas mixing ratio of $O_{2}/CF_{4}$ were investigated by optical emission spectrometer (OES).

  • PDF

Photovoltaic Properties of Cu(InGa)$Se_2$ Solar Cells with Sputter Conditions of Mo films (Mo 박막의 성장조건에 따른 Cu(InGa)$Se_2$ 박막 태양전지의 광변환효율)

  • Kim, S.K.;Lee, J.C.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, J.;Han, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.63-66
    • /
    • 2002
  • Bi-layer Mo films were deposited on sodalime glass substrates using DC magnetron sputtering. As the gas pressure and power density, the resistivity varied from $1.5{\times}10^{-5}$ to $4.97{\times}10^{-4}{\Omega}{\cdot}cm$. Furthermore, stress direction yielded compressive-to-tensile transition stress curves. The microstructure of the compressive stress films which had poor adhesion consists of tightly packed columns, but of the tensile-stressed films had less dense structure. Under all gas pressure conditions, Mo films exhibited distinctly increasing optical reflection with decreasing gas pressure. The expansion of (110) peak width with the gas pressure meant the worse crystalline growth. Also, The highest efficiency was 15.2% on 0.2 $cm^2$. The fill factor, open circuit voltage and short circuit current were 63 %, 570 m V and 42.6 $mA/cm^2$ respectively.

  • PDF

A Study of End Point Detection Measurement for STI-CMP Applications (STI-CMP 공정 적용을 위한 연마 정지점 고찰)

  • 김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.175-184
    • /
    • 2001
  • In this study, the improved throughput and stability in device fabrication could be obtained by applying CMP process to STi structue in 0.18 um semiconductor device. To employ the CMP process in STI structure, the Reverse Moat Process used to be added after STI Fill, as a result, the process became more complex and the defect were seriously increased than they had been,. Removal rate of each thin film in STI CMP was not uniform, so, the device must have been affected. That is, in case of excessive CMP, the damage on the active area was occurred, and in the case of insufficient CMP nitride remaining was happened on that area. Both of them deteriorated device characteristics. As a solution to these problems, the development of slurry having high removal rate and high oxide to nitride selectivity has been studied. The process using this slurry afford low defect levels, improved yield, and a simplified process flow. In this study, we evaluated the 'High Selectivity Slurry' to do a global planarization without reverse moat step, and also we evaluated EPD(Eend Point Detection) system with which 'in-situ end point detection' is possible.

  • PDF