• Title/Summary/Keyword: fill dam

Search Result 150, Processing Time 0.021 seconds

Estimating Geotechnical System Response Probability of Internal Erosion Risk in Fill Dam using Event Tree Analysis (사건수 분석 기법을 이용한 필댐의 내부 침식 위험도에 대한 지반공학적 시스템 응답 확률 산정)

  • Noh, Kyung-Lyun;Lim, Jeong-Yeul;Mok, Young-Jin;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1815-1829
    • /
    • 2014
  • Recently frequent collapse of old fill dams has taken place, which increases social awareness in the safety of the infrastructure. Fill dams in Korea has been incautiously regarded as safe once the fill dam is considered to have a full capacity to retain a conservative design flood determined by government authorities. However, developed foreign countries has been managing their fill dams by introducing systematic risk assessment techniques over a long period of time. In this study, the system response probabilities of the deteriorated old fill dams in Korea were systematically evaluated and analyzed by using the internal erosion toolbox based on the event tree analysis technique. The probability of the existence of flaw and the magnitude of the hydraulic gradient through a potential crack can significantly influence the geotechnical system response probability. The results of this study show that the probability of the existence of flaw and the magnitude of the hydraulic gradient through a potential crack can significantly influence the geotechnical system response probability and the risk of the deteriorated fill dam can be quantitatively assessed.

Geotechnical treatment for the fault and shattered zones under core foundation of fill dam (단층 및 파쇄대가 분포하는 Fill Dam 기초의 보강대책)

  • 김연중;최명달
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.19-35
    • /
    • 1992
  • aThe elastic properties of the fault zone (width; 3~12m), the shattered zone (width; over 40m) and the fresh rock zone distributed under the core foundation of fill dam in granitic gneiss have widely different range. The deformation moduli of the fresh rock zone, the fault zone and the shattered zone obtained from in situ rock tests - Plate Load Test and Bore Hole Deformation Test - show a range of $42,000~168,000kg/\textrm{cm}^2,{\;}963~2,204kg/\textrm{cm}^2{\;}and{\;}1,238~2,098kg/\textrm{cm}^2$, respectively. The differential settlements hetween the fault zone and the fresh rock zone are expected after the dam construction. Therefore, the displacement of foundation and concrete fill are evaluated using FEADAM 84 program of finite element analysis. The geometric distribution of discontinuifies obtained from the site mapping and drilling is considered in the finite element analysis. The analysis shows that the differential settlements between the fault zone and the fresh rock zone is about 6cm, while that of concrete fill is within 0.5cm.

  • PDF

Estimation of Dynamic Material Properties for Fill Dam : I. In-situ Shearwave Velocity Profiles (필댐 제체 재료의 동적 물성치 평가 : I. 현장 전단파 속도 주상도)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Kwon, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.69-85
    • /
    • 2009
  • It is very important to measure reliable dynamic properties of each zone in dam for seismic design. However, the Vs values of core and rock-fill zone are seldom determined by field test. Consequently, seismic design in dam is performed using Vs values assumed or empirically determined. So, it is required that reliable Vs has to be evaluated by in-situ test. In this study, surface wave method, which is nondestructive, was applied to dam to evaluate Vs profiles of core and rock-fill zone in dam. In 6 dams, using SASW and HWAW methods, Vs profiles were evaluated reliably. D/B of Vs profiles of each zone with depth and relationship between confining pressure and Vs profiles of rock-fill zone were constructed including existing results of other dams. The evaluated D/B and proposed relationship were compared with the frequently used empirical method by Sawada and Takahashi.

Seismic Failure Probability of the Korean Disaster Risk Fill Dams Estimated by Considering Freeboard Only (여유고만으로 추정된 국내 재해위험 저수지의 지진시 파괴확률)

  • Ha, Ik Soo;Lee, Soo Gwun;Lim, Jeong Yeul;Jung, Young Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.451-461
    • /
    • 2016
  • The objective of this study is to illustrate the methods and procedures for estimating the failure probability of small fill dams subjected to earthquake events and to estimate the seismic failure probability of the Korean disaster risk fill dams where geotechnical information is not available. In this study, first of all, seismic failure probabilities of 7 disaster risk small fill dams, where geotechnical information is available, were evaluated using event tree analysis. Also, the methods and procedures for evaluating probabilities are illustrated. The relationship between dam height and freeboard for 84 disaster risk small dams, for which the safety diagnosis reports are available, was examined. This relationship was associated with the failure computation equation contained in the toolbox of US Army corps of engineers. From this association, the dam height-freeborard critical curve, which represents 'zero' failure probability, was derived. The seismic failure probability of the Korean disaster risk fill dams was estimated using the critical curve and the failure probabilities computed for 7 small dams.

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.

Determination of Coefficient of Variation of Shear Wave Velocity in Fill Dam for Reliability Based Analysis (신뢰성 기반 해석을 위한 국내 필댐 구성 재료의 전단파 속도 변동계수 결정)

  • Park, Hyung-Choon;Oh, Hyun-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.31-39
    • /
    • 2020
  • Shear wave velocity (or shear modulus) is very important in the evaluation of seismic performance of a fill dam under an earthquake. A shear wave velocity profile can be determined by surface wave method such as HWAW and SASW methods but this profile has uncertainty caused by spatial variation of material property in a fill dam. This uncertainty in shear wave velocity profile could be considered using a coefficient of variation of material property in the reliability based analysis. In this paper, the possible 600 shear wave velocity profiles in the core and rockfill zone of fill dam were generated by the random shear wave velocity profile generation method, proposed by Hwang and Park, based on the field shear wave velocity profiles determined by the HWAW and SASW methods. And, through the statistical analysis of generated shear wave velocity profiles in the fill dam, the coefficient of variation (COV) of shear wave velocity with depth were evaluated for the core and rock filled zone of fill dam in Korea.

A Study on the Mechanical Compaction of Fill Dam (Fill Dam의 기계 전압효과에 관한 연구)

  • 윤충섭;김주범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-103
    • /
    • 1979
  • The compaction of core zone of the fill dam is very important foe increasing of the Strength of soil mass and reduction of permeability of the core. The principal objects of this study are to give the construction criteria of tamping rollers and to find out the relationships between density and permeability of soil after compaction. The results in this study are summarized as follows. 1. The core zone of fill dam should be compacted more than 8 passed because the compaction effects of clayey soil increase sharply in about 8 passes of roller. 2. The coefficient of permeability (K) increases with the thickness of compaction of soil even though the density is same. 3. The effect of compaction increases with the quantity of coarse materials such as coarse sand and gravel. 4. If D values change from 100 percent to 98 percent and from 100 percent to 95 percent, K values become 2 times and 5 times of initial K value respectively. 5. The coefficient of permeability in the field soil is very high comparing with the result of laboratory test at the same 100 percent compaction ratio, but differences between both results decrease with the decrease of compaction ratio. 6. Thickness of soil layer for the compaction should be increased for heavier compaction machine. 7. In order to get the compaction ratio of 98 percent or more, 10 to 12 passes of roller is generally required with the thickness of soil from 20cm to 30cm.

  • PDF

A Study on Management Criteria of Seepage for Fill Dams Considering Rainfall Effect (강수를 고려한 필댐 침투수량의 관리기준에 관한 연구)

  • Lee, Jongeun;Yoon, Sukmin;Im, Eun-Sang;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.5
    • /
    • pp.5-16
    • /
    • 2020
  • The purpose of this study is to suggest the management criteria through the decision tree analysis for a seepage, which is an important instrumentation type of the fill dam. In the case of the seepage of the dam in Korea, seepage can be increased rapidly because rainfall directly flow into the downstream slope and abutment of dam during rainfalls. Therefore, it is necessary the management criteria for the seepage of the fill dam in consideration of rainfall. In this study, decision tree analysis was performed for a fill dam in Korea by setting the seepage as the response variable and the rainfall and water level of dam as explanatory variables. As the study results, the water level acted as an explanatory variable from the conditions under daily rainfall of 34.75 mm/day, and the branch conditions of the water level were analyzed to be 37.4 m and 35.23 m. 98% of the rainfall data is distributed under the conditions of the daily rainfall of 34.75 mm/day, and coverage of the seepage is indicated from 13.25 L/min to 24.24 L/min. When the rainfall and water level as the influence factors for the seepage were selected, the influence of the rainfall was dominant. Finally, the seepage of fill dam by considering the rainfall and water level was suggested as a management criteria.

Study on Seepage Behavior of Concrete Faced Gravel-Fill Dam (표면차수벽형사력댐의 침투거동에 관한 연구)

  • Cho, Sung-Eun;Kim, Ki-Young;Park, Han-Gyu;Ha, Ik-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.836-841
    • /
    • 2008
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.

  • PDF

SAFETY EVALUATION OF ROCK-FILL DAM

  • HoWoongShon;YoungChulOh;YoungKyuLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • For safety evaluation of a rockfill dam, it is often necessary to investigate spatial distribution and dynamic characterization of weak zones such as fractures. For this purpose, both seismic and electric methods are adopted together in this research. The former employs the multichannel analysis of surface waves (MASW) method, and aims at the mapping of 2-D shear-wave velocity (Vs) profile along the dam axis that can be associated with dynamic properties of filled materials. The latter is carried out by DC- resistivity survey with a main purpose of mapping of spatial variations of physical properties of dam materials. Results from both methods are compared in their signature of anomalous zones. In addition, downhole seismic survey was carried out at three points within the seismic survey lines and results by downhole seismic survey are compared with the MASW results. We conclude that the MASW is an efficient method for dynamic characterization of dam-filling materials, and also that joint analyses of these two seemingly unrelated methods can lead to an effective safety evaluation of rock-fill dam.

  • PDF