• Title/Summary/Keyword: fill dam

Search Result 150, Processing Time 0.02 seconds

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

A Study on Reconstruction Models of Side-channel Spillway for Discharge Capacity Improvement (측수로형 여수로의 홍수배제능력증대를 위한 월류부 개축방안에 관한 연구)

  • Park, Sae-Hoon;Moon, Young-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2007
  • The small and medium sized dams have the fill dam type of a lot of occasions, which are often weak in cases of major floods. For this reason, although a countermeasure is in great need, due to the importance of the facilities and financial situations, no direct safety measures have been taken. In this study, in order to minimize construction expenditure for practical safety measures in cases of major floods, the overflow section of spillway has been analyzed focusing on how the overflow capacity will increase in the case of partially rebuilding a part of the overflow section of spillway favorable for hydraulic conditions. The labyrinth weir and movable weir was chosen for reconstruction models of the overflow section. Moreover, for analyzing the after-effects of the reconstruction, a small scale dam was temporarily chosen for various experiments such as the hydraulic model testing and the three dimension numerical evaluation through the use of Flow-3D.

A Study on the Mechanical Compaction of Pervious Materials (투수성 성토재료의 기계다짐에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.3
    • /
    • pp.65-77
    • /
    • 1981
  • The Compaction of fill dam is very important for increasing of the safty of dam. Vibration roller is used for the compaction of pervious materials such as sand and gravel. The principal objects of this study are to give a comstruction criteria of vibration roller and to find out the relationship between dry density and permeabity of pervious soil after compaction. The results in this study are summerized as follows. 1.The relationship between maximum dry density (Υdmax) and optimum moisture content(Wo) of modified compaction test is Υdmax=2. 74-0. 064w0 2.The maximum dry density decrease with increasing fine particle(n) and the relative formular is n==ae-brdmax 3.The maximum dry density is influenced more by passing rate of number 200 sieve than 4 sieve. 4.The coefficient of permeability are similar when the degrees of compaction are equal even though the spreading thickness of soil are different. 5.The coefficient of permeability(K)is greatly influence by fine particle passing number 200 sieve, and those relationship is inversely proportionate. 6.The K values of pervious soil are from 10-0 cm/sec to 10-4 cm/sec when degree of compaction by a modified method is from 90 to 95percent. 7.The coarser material is little influenced on the permeability with different density. 8.The increasing rate of permeability with decreasing degree of compaction is more influened by fine pacticle than number 200 sieve. When degree of compaction decrease from 100 percent to 90 percent the K values of SM and GM increase about 20 times but GW increase 6 times only. 9.The effect of compaction by vibration roller is greatly influenced by 6 passes and the increasing rate of the effect is decraased at 8 passes. 10. In order to get the degree of compaction of 95 percent or more, 6 to 8 passes of roller are generall required with 30 cm thickeness of soil for 4.5 ton to 6.5 ton vibration roller and 7 to 8 passes is required with 50cm thickness for 8 to 12 ton roller.

  • PDF

Characteristics of Shear Strength of Coarse Grained Materials Depending on Experimental Densities (시험밀도에 따른 조립재료의 전단강도 특성)

  • Kim, Kyoung-Yul;Lee, Dae-Soo;Hong, Sung-Yun;Oh, Ki-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.854-859
    • /
    • 2006
  • The density of coarse grained materials which is used in rock-fill dam or the piling the ground are used as $1.85\sim2.10g/cm^3$. Hereupon, the effect of variation of density on shear strength of ones was analyzed from the results of large scale shear test. The sample for the test was obtained from the local quarry sites. The test conditions are that density(1.85 versus $2.10g/cm^3$), material size range$(76.3\sim2.0\;mm)$, water content(air dry condition) and uniformity coefficient(5.0) Test result shows that the shear strength of $2.10g/cm^3$ is relatively larger than that of $1.85g/cm^3$.

  • PDF

Microgravity for Engineering and Environmental Applications (토목.환경 응용을 위한 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.15-25
    • /
    • 2007
  • Gravity method could be one of the most effective tool for evaluating the soundness of basement which is directly correlated with density and its variations. Moreover, Gravimeter is easy to handle and strong to electromagnetic noises. But, gravity anomaly due to the target structures in engineering and environmemtal applications are too small to detect, comparing to the external changes, such as, elevation, topography, and regional geological variations. Gravity method targeting these kinds of small anomaly sources with high precision usually called microgravity. Microgravimetry with precision and accuracy of few ${\mu}Gal$, can be achieved by the recent high-resolution gravimeter, careful field acquisition, and sophisticated processing, analysis, and interpretation routines. This paper describes the application of the microgravity, such as, density structure of a rock fill dam, detection of abandoned mine-shaft, detection and mapping of karstic cavities in limestone terrains, and time-lapse gravity for grout monitoring. The case studies show how the gravity anomalies detect the location of the targets and reveal the geologic structure by mapping density distributions and their variations.

  • PDF

A Development of Hydrologic Risk Analysis Model for Small Reservoirs Based on Bayesian Network (Bayesian Network 기반 소규모 저수지의 수문학적 위험도 분석 모형 개발)

  • Kim, Jin-Guk;Kim, Jin-Young;Gwon, Hyeon-Han;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.105-105
    • /
    • 2017
  • 최근 우리나라에서는 국지성호우로 인해 발생하는 돌발홍수에 방어하지 못하는 소규모 저수지에 대한 붕괴사고가 빈발하고 있다. 붕괴된 저수지를 살펴보면, 대체적으로 규모가 작아 체계적인 안전관리가 이루어지지 않거나 경과연수가 50년 이상인 필댐(fill dam) 형식으로 축조된 노후저수지로서 갑작스러운 홍수를 대응하는데 있어 매우 취약한 상태이다. 체계적으로 운영되는 대형댐에 비해 축조기간이 오래된 소규모 저수지의 경우, 저수지에 대한 수문학적 정보가 거의 없거나 미계측되어 보수보강이 필요한 저수지를 선정하거나 정량적인 위험도를 분석하는데 매우 어려운 실정이다. 이러한 이유로 본 연구에서는 노후된 소규모 저수지에 대한 수문학적 파괴인자들을 선정하여 Bayesian Network기반의 소규모 저수지 위험도 분석 모형을 구축하였다. 구축된 모형을 기준으로 고려될 수 있는 다양한 위험인자 및 이들 인자간의 연관성을 평가하였으며, 각각의 노드에 파괴인자를 노드로 할당하여 소규모 저수지의 위험도를 분석하였다. Bayesian Network기법의 도입으로 불확실한 상황을 확률로 표시하고, 복잡한 추론을 정량화된 노드의 관계로 단순화시켜 노드의 연결 관계로 표현하였다. 본 연구에서 제안된 모형은 노후된 소규모 저수지의 수문학적 위험도를 정량으로 분석하는 모형으로서 활용성이 높을 것으로 기대된다.

  • PDF

Improvement of Quantitative Condition Assessment Criteria for Reservoir Embankment Safety Inspection Considering Characteristics of Small Reservoirs in Korea (소규모 저수지의 특성을 고려한 제체 안전진단의 정량적 상태평가 기준 개선)

  • Jeon, Geonyeong;Bang, Donseok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.27-38
    • /
    • 2021
  • The physical condition assessment criteria of fill dam safety inspection are now weakly regulated and inappropriate for small agricultural reservoirs since these criteria have fundamental backgrounds suitable for large-scale dams. This study proposes the degree (critical values) of defects for the quantitative condition assessment of the embankment in order to prepare the condition assessment criteria for a small reservoir with a storage capacity of less than one (1) million cubic meters. The critical values of defects were calculated by applying the method that considers the size ratios based on the dimensional data of reservoirs, and the method of statistical analysis on the measured values of the defect degree which extracted from comprehensive annual reports on reservoir safety inspection. In comparison with the current criteria, the newly proposed critical values for each condition assessment item of the reservoir embankment are presented in paragraphs 4 and 6 of the conclusion. In addition, this study presents a method of displaying geometric figures to clarify the rating classification for condition assessment items with the two defect indicators.

Risk Analysis Method for Deriving Priorities for Detailed Inspection of Small and Medium-sized Fill Dam (중소형 필댐의 정밀점검 우선순위 도출을 위한 간이 위험도 분석 방법)

  • Kim, Jinyoung;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.11-16
    • /
    • 2020
  • Korea's agricultural reservoir is one of the country's major infrastructures and plays an important role in people's lives. However, aging reservoirs are a risk for life and property. Currently, large and small dams and reservoirs have been constructed nationwide for more than 40 years of aging. Dams and reservoirs built nationwide are managed by various institutions. Therefore, it is difficult to manage all dams and reservoirs due to cost and time. Managers in the field with less management personnel and lack of expertise should be able to quickly identify risk factors for multiple reservoirs. In this study, risk factors such as seepage, leakage, settlement slide, crack and erosion were selected. To assess the risk of the items, we used the analytical hierarchical process (AHP), one of the Multi-Criteria Decision Making (MCDM) methods. The analysis showed that seepage has the greatest impact on reservoir collapse. It is judged that the priority of detailed diagnosis can be determined by evaluating the risk of dam reservoir collapse in a convenient way in advance using the calculated weight.

Comparison of Shear Strength of Coarse Materials Measured in Large Direct Shear and Large Triaxial Shear Tests (대형 직접전단시험과 대형 삼축압축시험에 의한 조립재료의 전단강도 비교)

  • Seo, Minwoo;Kim, Bumjoo;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • Since the particle sizes of the coarse materials used in dam or harbor constructions are much larger than those of typical soils, it is desirable that large shear testing apparatuses are used when performing shear tests on the coarse materials to obtain as accurate results as possible. Two large-scale shear testing apparatuses, large direct shear testing apparatus and large triaxial shear testing apparatus, are commonly used. Currently in Korea, however, there have not been many cases in which shear tests were done using the large apparatus due to mainly difficulties in manufacturing, diffusing, and operating them. In present study, both large direct shear tests and large triaxial shear tests were performed on the coarse materials, which are used as dam fill materials, for 6 test cases in which particle sizes, specimen sizes, vertical pressure (confining pressure) conditions were little different, and then, the shear strength characteristics of the materials were compared with the two different shear tests. The test results showed that, by the Mohr-Coulomb failure criterion, overall the shear strength obtained by the large direct shear tests was larger than that by the large triaxial shear tests. Moreover, the shear strength under the normal stress of 1,000 kPa was about 10 to 70% larger for the large direct shear tests than for the large triaxial shear tests, revealing the larger differences in the coarse materials, compared to typical soils.

  • PDF

Characteristics of Deformation and Shear Strength of Parallel Grading Coarse-grained Materials Using Large Triaxial Test Equipment (대형삼축시험에 의한 상사입도 조립재료의 변형 및 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.57-67
    • /
    • 2009
  • Along with the advanced construction technologies, the maximum size of coarse aggregate used for dam construction ranges from several cm to 1m. Testing the original gradation samples is not only expensive but also causes many technical difficulties. Generally, indoor tests are performed on the samples with the parallel grading method after which the results are applied to the design and interpretation of the actual geotechnical structure. In order to anticipate the exact behavior characteristics for the geotechnical structure, it is necessary to understand the changes in the shear behavior. In this study, the Large Triaxial Test was performed on the parallel grading method samples that were restructured with river bed sand-gravel, with a different maximum size, which is the material that was used to construct Dam B in Korea. And the Stress - Strain characteristics of the parallel grading method samples and the characteristics of the shear strength were compared and analyzed. In the test results, the coarse-grained showed strain softening and expansion behavior of the volume, which became more obvious as the maximum size increased. The internal angle of friction and the shear strength appeared to increase as the maximum size of the parallel grading method sample increased.