• Title/Summary/Keyword: file I/O cache

Search Result 29, Processing Time 0.031 seconds

Development of a Distributed File System for Multi-Cloud Rendering (멀티 클라우드 렌더링을 위한 분산 파일 시스템 개발 )

  • Hyokyung, Bahn;Kyungwoon, Cho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.77-82
    • /
    • 2023
  • Multi-cloud rendering has been attracting attention recently as the computational load of rendering fluctuates over time and each rendering process can be performed independently. However, it is challenging in multi-cloud rendering to deliver large amounts of input data instantly with consistency constraints. In this paper, we develop a new distributed file system for multi-cloud rendering. In our file system, a local machine maintains a file server that manages versions of rendering input files, and each cloud node maintains a rendering cache manager, which performs distributed cooperative caching by considering file versions. Measurement studies with rendering workloads show that the proposed file system performs better than NFS and the uploading schemes by 745% and 56%, respectively, in terms of I/O throughput and execution time.

An Efficient Cache Management Scheme for Load Balancing in Distributed Environments with Different Memory Sizes (상이한 메모리 크기를 가지는 분산 환경에서 부하 분산을 위한 캐시 관리 기법)

  • Choi, Kitae;Yoon, Sangwon;Park, Jaeyeol;Lim, Jongtae;Lee, Seokhee;Bok, Kyoungsoo;Yoo, Jaesoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.543-548
    • /
    • 2015
  • Recently, volume of data has been growing dramatically along with the growth of social media and digital devices. However, the existing disk-based distributed file systems have limits to their performance of data processing or data access, due to I/O processing costs and bottlenecks. To solve this problem, the caching technique is being used to manage data in the memory. In this paper, we propose a cache management scheme to handle load balancing in a distributed memory environment. The proposed scheme distributes the data according to the memory size, n distributed environments with different memory sizes. If overloaded nodes occur, it redistributes the the access time of the caching data. In order to show the superiority of the proposed scheme, we compare it with an existing distributed cache management scheme through performance evaluation.

Anticipatory I/O Management for Clustered Flash Translation Layer in NAND Flash Memory

  • Park, Kwang-Hee;Yang, Jun-Sik;Chang, Joon-Hyuk;Kim, Deok-Hwan
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.790-798
    • /
    • 2008
  • Recently, NAND flash memory has emerged as a next generation storage device because it has several advantages, such as low power consumption, shock resistance, and so on. However, it is necessary to use a flash translation layer (FTL) to intermediate between NAND flash memory and conventional file systems because of the unique hardware characteristics of flash memory. This paper proposes a new clustered FTL (CFTL) that uses clustered hash tables and a two-level software cache technique. The CFTL can anticipate consecutive addresses from the host because the clustered hash table uses the locality of reference in a large address space. It also adaptively switches logical addresses to physical addresses in the flash memory by using block mapping, page mapping, and a two-level software cache technique. Furthermore, anticipatory I/O management using continuity counters and a prefetch scheme enables fast address translation. Experimental results show that the proposed address translation mechanism for CFTL provides better performance in address translation and memory space usage than the well-known NAND FTL (NFTL) and adaptive FTL (AFTL).

  • PDF

Caching and Prefetching Policies Using Program Page Reference Patterns on a File System Layer for NAND Flash Memory (NAND 플래시 메모리용 파일 시스템 계층에서 프로그램의 페이지 참조 패턴을 고려한 캐싱 및 선반입 정책)

  • Park, Sang-Oh;Kim, Kyung-San;Kim, Sung-Jo
    • The KIPS Transactions:PartA
    • /
    • v.14A no.4
    • /
    • pp.235-244
    • /
    • 2007
  • Caching and prefetching policies have been used in most of computer systems to compensate speed differences between primary memory and secondary storage devices. In this paper, we design and implement a Flash Cache Core Module(FCCM) on the YAFFS which operates on a file system layer for NAND flash memory. The FCCM is independent of the underlying kernel in order to support its stability and compatibility. Also, we implement the Dirty-Last memory replacement technique considering the characteristics of flash memory, and the waiting queue for pages to be prefetched according to page hit. The FCCM reduced the number of I/Os and the amount of prefetched pages by maximum 55%(20% on average) and maximum 55%(24% on average), respectively, comparing with caching and prefetching policies of Linux.

Caching and Prefetching Policies Using Program Page Reference Patterns on a File System Layer for NAND Flash Memory (NAND 플래시 메모리용 파일 시스템 계층에서 프로그램의 페이지 참조 패턴을 고려한 캐싱 및 선반입 정책)

  • Kim, Gyeong-San;Kim, Seong-Jo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.777-778
    • /
    • 2006
  • In this thesis, we design and implement a Flash Cache Core Module (FCCM) which operates on the YAFFS NAND flash memory. The FCCM applies memory replacement policy and prefetching policy based on the page reference pattern of applications. Also, implement the Clean-First memory replacement technique considering the characteristics of flash memory. In this method the decision is made according to page hit to apply prefetched waiting area. The FCCM decrease I/O hit frequency up to 37%, Compared with the linux cache and prefetching policy. Also, it operated using less memory for prefetching(maximum 24% and average 16%) compared with the linux kernel.

  • PDF

Data De-duplication and Recycling Technique in SSD-based Storage System for Increasing De-duplication Rate and I/O Performance (SSD 기반 스토리지 시스템에서 중복률과 입출력 성능 향상을 위한 데이터 중복제거 및 재활용 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.149-155
    • /
    • 2012
  • SSD is a storage device of having high-performance controller and cache buffer and consists of many NAND flash memories. Because NAND flash memory does not support in-place update, valid pages are invalidated when update and erase operations are issued in file system and then invalid pages are completely deleted via garbage collection. However, garbage collection performs many erase operations of long latency and then it reduces I/O performance and increases wear leveling in SSD. In this paper, we propose a new method of de-duplicating valid data and recycling invalid data. The method de-duplicates valid data and then recycles invalid data so that it improves de-duplication ratio. Due to reducing number of writes and garbage collection, the method could increase I/O performance and decrease wear leveling in SSD. Experimental result shows that it can reduce maximum 20% number of garbage collections and 9% I/O latency than those of general case.

Optimizing LRU Lock Management in the Linux Kernel for Improving Parallel Write Throughout in Many-Core CPU Systems (매니코어 CPU 시스템의 병렬 쓰기 성능 향상을 위한 리눅스 커널의 LRU 관리 최적화 기법)

  • Eun-Kyu Byun;Gibeom Gu;Kwang-Jin Oh;Jiwoo Bang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.7
    • /
    • pp.209-216
    • /
    • 2023
  • Modern HPC systems are equipped with many-core CPUs with dozens of cores. When performing parallel I/O in such a system, there is a limit to scalability due to the problem of the LRU lock management policy of the Linux system. The study proposes an improved FinerLRU to solve this problem. Our new FinerLRU improves the parallel write performance of file systems using the buffer cache through granular lock management by increasing the number of LRU locks upto the maximum number of cores. The proposed method was implemented in Linux 5.18.11, and the performance was measured on two types of CPUs, Intel Icelake Xeon and Intel Knights landing, with different characteristics, and it was found that a performance improvement of about two times can be obtained in both types of systems.

Implementation of a DB-Based Virtual File System for Lightweight IoT Clouds (경량 사물 인터넷 클라우드를 위한 DB 기반 가상 파일 시스템 구현)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.311-322
    • /
    • 2014
  • IoT(Internet of Things) is a concept of connected internet pursuing direct access to devices or sensors in fused environment of personal, industrial and public area. In IoT environment, it is possible to access realtime data, and the data format and topology of devices are diverse. Also, there are bidirectional communications between users and devices to control actuators in IoT. In this point, IoT is different from the conventional internet in which data are produced by human desktops and gathered in server systems by way of one-sided simple internet communications. For the cloud or portal service of IoT, there should be a file management framework supporting systematic naming service and unified data access interface encompassing the variety of IoT things. This paper implements a DB-based virtual file system maintaining attributes of IoT things in a UNIX-styled file system view. Users who logged in the virtual shell are able to explore IoT things by navigating the virtual file system, and able to access IoT things directly via UNIX-styled file I O APIs. The implemented virtual file system is lightweight and flexible because it maintains only directory structure and descriptors for the distributed IoT things. The result of a test for the virtual shell primitives such as mkdir() or chdir() shows the smooth functionality of the virtual file system, Also, the exploring performance of the file system is better than that of Window file system in case of adopting a simple directory cache mechanism.

Improving Flash Translation Layer for Hybrid Flash-Disk Storage through Sequential Pattern Mining based 2-Level Prefetching Technique (하이브리드 플래시-디스크 저장장치용 Flash Translation Layer의 성능 개선을 위한 순차패턴 마이닝 기반 2단계 프리패칭 기법)

  • Chang, Jae-Young;Yoon, Un-Keum;Kim, Han-Joon
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.101-121
    • /
    • 2010
  • This paper presents an intelligent prefetching technique that significantly improves performance of hybrid fash-disk storage, a combination of flash memory and hard disk. Since flash memory embedded in a hybrid device is much faster than hard disk in terms of I/O operations, it can be utilized as a 'cache' space to improve system performance. The basic strategy for prefetching is to utilize sequential pattern mining, with which we can extract the access patterns of objects from historical access sequences. We use two techniques for enhancing the performance of hybrid storage with prefetching. One of them is to modify a FAST algorithm for mapping the flash memory. The other is to extend the unit of prefetching to a block level as well as a file level for effectively utilizing flash memory space. For evaluating the proposed technique, we perform the experiments using the synthetic data and real UCC data, and prove the usability of our technique.