• Title/Summary/Keyword: field soil

Search Result 5,037, Processing Time 0.034 seconds

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

Comparison of Soil seed bank and Soil characteristics in Conventional Paddy field and Organic Paddy field (관행 논과 유기 재배 논의 토양 종자은행과 토양 특성 비교)

  • Jeong Hwan Bang;Jong-Ho Park;Young-Mi Lee;Chul-Lee Chang;Sung-Jun Hong
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.237-247
    • /
    • 2023
  • Paddy fields not only provide a variety of ecosystem services but also serve as crucial habitats for biodiversity conservation. Recently, their ecological value and significance have been increasingly emphasized. Therefore, this study aimed to investigate the characteristics of soil seed banks and analyze their correlation with soil environmental factors in Conventional Paddy field (CP) and Organic Paddy field (OP) with different farming practices. Our results revealed that the vegetation in CP was simple, resulting in low plant diversity in the soil seed banks. On the other hand, the vegetation in OP was relatively diverse, leading to higher plant diversity in the soil seed banks. Additionally, distinct differences in soil environmental characteristics were observed between OP (K, Ca, Mg, Na, Fe, Mn, B↓) and CP (K, Ca, Mg, Na, Fe, Mn, B↑). These results suggest that variations in agricultural practices for rice cultivation have influenced the structure and diversity of vegetation and soil seed banks. Furthermore, these agricultural practices have had both direct and indirect effects on soil environmental factors. Our findings can serve as fundamental data for evaluating biodiversity conservation in agricultural ecosystems, ecosystem restoration, and ecological value assessment.

Changes of Soil Temperature and Moisture under the Agrivoltaic Systems in Fallow Paddy Field during Spring Season (봄철 영농형 태양광 시설 하부 휴경논 토양의 온도와 수분 변화)

  • Yuna Cho;Euni Cho;Jae-Hyeok Jeong;Hoejeong Jeong;Woon-Ha Hwang;Jaeil Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.218-225
    • /
    • 2023
  • An agrivoltaic system (AVS) is a combined system that generates power through photovoltaic panels (PVPs) installed above a field where a crop is cultivated. Although soil moisture is an important limiting factor for open-field crop production, particularly during spring season in Korea, it is not well considered in the utilization of AVS. Indeed, the application of water-energy-food nexus on the AVS should be necessary. In this study, the changes of soil moisture and temperature under the AVS was investigated in fallow paddy field during spring season. The AVS that has partial shading condition by PV panels was decreased soil temperature and increased soil moisture compared to open-field. Furthermore, the maximum of the change in soil moisture to the change in soil temperature had a negative correlation both on open-field and AVS under wet condition. It represents that the micro-climate under the AVS is in energy-limited condition. The open-field of relatively high soil temperature was in water-limited condition. The different behavior of soil moisture on the AVS should be considered for the sustainable agricultural system as related to water-energy-food nexus.

On-line Real Time Soil Sensor

  • Shibusawa, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Achievements in the real-time soil spectro-photometer are: an improved soil penetrator to ensure a uniform soil surface under high speed conditions, real-time collecting of underground soil reflectance, getting underground soil color images, use of a RTK-GPS, and all units are arranged for compactness. With the soil spectrophotometer, field experiments were conducted in a 0.5 ha paddy field. With the original reflectance, averaging and multiple scatter correction, Kubelka-Munk (KM) transformation as soil absorption, its 1st and 2nd derivatives were calculated. When the spectra was highly correlated with the soil parameters, stepwise regression analysis was conducted. Results include the best prediction models for moisture, soil organic matter (SOM), nitrate nitrogen (NO$_3$-N), pH and electric conductivity (EC), and soil maps obtained by block kriging analysis.

  • PDF

Investigation of Possible Horizontal Gene Transfer from Transgenic Rice to Soil Microorganisms in Paddy Rice Field

  • Kim, Sung-Eun;Moon, Jae-Sun;Kim, Jung-Kyu;Choi, Won-Sik;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.187-192
    • /
    • 2010
  • In order to monitor the possibility of horizontal gene transfer between transgenic rice and microorganisms in a paddy rice field, the gene flow from a bifunctional fusion (TPSP) rice containing trehalose-6-phosphate synthase and phosphatase to microorganisms in soils was investigated. The soil samples collected from the paddy rice field during June 2004 to March 2006 were investigated by multiplex PCR, Southern hybridization, and amplified fragment length polymorphism (AFLP). The TPSP gene from soil genomic DNAs was not detected by PCR. Soil genomic DNAs did not show homologies on the Southern blotting data, indicating that gene transfer did not occur during the last two years in the paddy rice field. In addition, the AFLP band patterns produced by soil genomic DNAs from both transgenic and non-transgenic rice fields appeared similar to each other when analyzed by the NTSYSpc program. Thus, these data suggest that transgenic rice does not give a significant impact on the communities of soil microorganisms, although long-term observation may be needed.

Effect Reinforced Ground using Geocell (지오셀을 적용한 지반의 보강효과에 관한연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.782-791
    • /
    • 2009
  • This study was carried out the laboratory tests and field plate load test in order to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comprison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. In the future, the reinforcement effect of the geocell rigidity and load-balancing effect of the geocells should be evaluated.

  • PDF

Causality between climatic and soil factors on Italian ryegrass yield in paddy field via climate and soil big data

  • Kim, Moonju;Peng, Jing-Lun;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.61 no.6
    • /
    • pp.324-332
    • /
    • 2019
  • This study aimed to identify the causality between climatic and soil variables affecting the yield of Italian ryegrass (Lolium multiflorum Lam., IRG) in the paddy field by constructing the pathways via structure equation model. The IRG data (n = 133) was collected from the National Agricultural Cooperative Federation (1992-2013). The climatic variables were accumulated temperature, growing days and precipitation amount from the weather information system of Korea Meteorological Administration, and soil variables were effective soil depth, slope, gravel content and drainage class as soil physical properties from the soil information system of Rural Development Administration. In general, IRG cultivation by the rice-rotation system in paddy field is important and unique in East Asia because it contributes to the increase of income by cultivating IRG during agricultural off-season. As a result, the seasonal effects of accumulated temperature and growing days of autumn and next spring were evident, furthermore, autumnal temperature and spring precipitation indirectly influenced yield through spring temperature. The effect of autumnal temperature, spring temperature, spring precipitation and soil physics factors were 0.62, 0.36, 0.23, and 0.16 in order (p < 0.05). Even though the relationship between soil physical and precipitation was not significant, it does not mean there was no association. Because the soil physical variables were categorical, their effects were weakly reflected even with scale adjustment by jitter transformation. We expected that this study could contribute to increasing IRG yield by presenting the causality of climatic and soil factors and could be extended to various factors.

Priming Effect of Rice Seeds on Seedling Establishment under Adverse Soil Conditions

  • Lee, Suk-Soon;Kim, Jae-Hyeun;Hong, Seung-Beam;Yun, Sang-Hee;Park, Eui-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.194-198
    • /
    • 1998
  • An experiment was carried out to find out the priming effects of rice seeds, Oryza sativa L. (cv. Ilpumbyeo) on. the seedling establishment and early emergence under excess soil moisture conditions. Seeds were primed by soaking in -0.6 MPa polyethylene glycol (PEG) solution at $25^{\circ}C$ for 4 days. The primed seeds were sown in soils with various soil moistures (60, 80, 100, 120, and 140% field capacity) at 17 and $25^{\circ}C$, respectively. Germination and emergence rates, plumule height, and radicle length of primed seeds were higher than those of untreated seeds at any soil moisture and temperature examined. The time from planting to 50% germination ($T_{50}$) of primed seeds was less than that of untreated seeds by 0.9~3.7 days. Germination rate, emergence rate, plumule height, and radicle length were highest at the soil moisture of 80% field capacity among the soil moistures. Priming effects of rice seeds on germination and emergence rates were more prominent under the unfavorable soil moistures (60, 100, 120, and 140% field capacity) than those under the optimum soil moisture condition (80% field capacity). However, priming effects on seedling growth were greater at near optimum soil moisture compared with too lower or higher soil moistures. Therefore, these findings suggest that priming of rice seeds may be a useful way for better seedling establishment under the adverse soil conditions.

  • PDF

Relationships between Soil Factors and Growth of Annual Ring in Pinus densiflora on Stony Mountain (바위산의 토양요인과 소나무의 연륜생장 사이의 관계)

  • Lee, Chang Seok;Joon Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.151-159
    • /
    • 1987
  • Relationships between soil factors and the growth of annual ring of Pinus densiflora grown on stony mountain were investigated at two sites of the different parent rocks: the one was formed by granite at Mt. Gwanag, Seoul and the other feldspar porphyry at Mt. Bipa, Daegu. The growth of annual ring was influenced by the physical factors of soil, such as soil depth, field caacity and water content of soil, rather than by the KDICical factors, such as total nitrogen, potassium, and calcium of soil. Of the soil factors affecting the growth of annual ring, soil depth, field capacity, water content of soil and organic matter closely interrelated with each other. All of these factors influenced water content of soil which might affect the water potential of Pinus densiflora leaves. In fact, the leaf water potential, affecting as the main factor for the growth of annual ring, of the pine grown in a deep soil was higher than that of the pine in a shallow soil.

  • PDF

Field Model Test of the Non-power Soil Cleaning System (무동력 토사제거시스템의 현장모형실험)

  • Park, Chan Keun;Lee, Young Hak;Hong, Seok Min;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.63-73
    • /
    • 2019
  • Coastal and fishing facilities are gradually deteriorating in function due to the continual accumulation of soil sediments, which has affected local economic activities. Currently, there are many methods to remove soil sediments, but these methods are either a temporary solution or require a repetitive removal of the soil sediments, which is a huge financial burden for the maintenance of the facilities. To solve these problems, this study proposed a non-power soil cleaning system and evaluated field applicability by carrying out field model tests. The conditions for the evaluation focused on the drainage-elapsed time and drainage-outflow velocity according to the water level change in the water tank. In the field test, silty clay and sand were separately installed, and sedimentation soil removal test was practiced. As a result, the system was verified to have a sufficient outflow velocity for the removal of soil sediments. In addition, a generalization equation that can be used in different regions of the tide was suggested in this study. These results will greatly contribute to removing soil sediments in ports and dike gate facilities on the southwest coast. Since the system is an eco-friendly technology that does not require additional energy, thus it is expected to contribute to maintenance of sustainable facility performance as well as economic effect in the future.