• Title/Summary/Keyword: field seismic test

Search Result 157, Processing Time 0.022 seconds

Seismic response of a monorail bridge incorporating train-bridge interaction

  • Kim, Chul-Woo;Kawatani, Mitsuo;Lee, Chang-Hun;Nishimura, Nobuo
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.111-126
    • /
    • 2007
  • Dynamic responses of the bridge for a straddle-type monorail subjected to the ground motion of high probability to occur are investigated by means of a three-dimensional traffic-induced vibration analysis to clarify the effect of a train's dynamic system on seismic responses of a monorail bridge. A 15DOFs model is assumed for a car in the monorail train. The validity of developed equations of motion for a monorail train-bridge interaction system is verified by comparison with the field-test data. The inertia effect due to a ground motion is combined with the monorail train-bridge interaction system to investigate the seismic response of the monorail bridge under a moving train. An interesting result is that the dynamic system of the train on monorail bridges can act as a damper during earthquakes. The observation of numerical results also points out that the damper effect due to the dynamic system of the monorail train tends to decrease with increasing speed of the train.

Target Localization Method using the Detection Signal Strength of Seismic Sensors for Surveillance Reconnaissance Sensor Network (감시정찰 센서 네트워크에서의 지진동센서 탐지 신호 세기를 이용한 표적 측위 방법)

  • Hyeon-Soo Im;In-Yong Hwang;Hyung-Seok Kim;Sang-Heon Shin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1291-1298
    • /
    • 2023
  • Surveillance reconnaissance sensor network is used for surveillance in wartime and area of operation. In this paper, we propose a target localization method using the detection signal strength of seismic sensors. Relay equipment calculates the target location using coordinate information and detection signal strength of the seismic sensors. Target localization error deviation due to environmental factors was minimized by subtracting the dynamic offset when calculating the target location. Field test shows improvement of target localization through reduction of errors. The average error was decreased to 3.62m. Up to 62% improved result was obtained compared to weighted centroid localization method.

A Study of Obtaining Reliable Travel Time Information in Downhole Seismic Method (다운홀 기법에서 신뢰성 있는 도달시간 정보 산출 방법에 대한 고찰)

  • Bang, Eun-Seok;Lee, Sei-Hyun;Kim, Jong-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.17-33
    • /
    • 2007
  • Downhole seismic method is widely used for obtaining shear wave velocity profile of a site because it is simple and economical. Determining accurate travel time of shear wave is very important to obtain reliable result in downhole seismic method. In this paper, comparison study of various travel time determination methods was performed. Numerical study and model chamber test were performed for effective comparison study. Signal traces were acquired by performing downhole test at each numerical simulation and soil box test. Travel time data for each signal traces were determined by using six different methods and Vs profiles were evaluated. Comparing travel time data and Vs profiles with the reference value, the first arrival picking method proved to be ambiguous and unreliable. Other methods also did not always provide accurate results and the magnitude of error was dependent on the signal to noise ratio. Cross-correlation method proved to be the most adequate method for the field application and it was verified additionally with field data.

Modification of SPT-Uphole Method using Two Component Surface Geophones (2방향 지표면 속도계를 활용한 SPT-업홀 기법 개선 연구)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.109-120
    • /
    • 2006
  • SPT-Uphole test is a seismic field test using receivers on ground surface and a SPT (Standard penetration test) source in depth. Even though this method is simple and economic, it makes hesitate to apply in real field that it is difficult to obtain reliable travel time information of shear wave because of the characteristics of SPT impact source. To overcome this shortcoming, in this paper, modified SPT-Uphole method using two component surface geophones was suggested. Numerical analysis was performed using finite element method for understanding the characteristics of surface motion induced by in-depth vertical source, and comparison study of the various methods which determine the travel time information in SPT-Uphole method was performed. In result, it is thought that the most reasonable method is using the first local maximum point of the root mean square value signals of vertical and horizontal component in time domain. Finally, modified SPT-Uphole method using two component surface geophones was performed at the site, and the applicability in field was verified by comparing wave velocity profiles determined by the SPT-Uphole method with the profiles determined by SASW method and SPT-N values.

A Pilot Study of In-hole Seismic Method (인홀탄성파시험의 타당성 연구)

  • Mok, Young-Jin;Kim, Jung-Han;Kang, Byung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.23-31
    • /
    • 2003
  • Over the past half century, borehole seismic surveys have been diversified into the three techniques such as crosshole, downhole, and suspension logging according to their devices and testing configurations. These field techniques have been improved, in terms of equipment and testing procedures, and are very valuable in the evaluation of ground characteristics for geotechnical and earthquake engineering problems. Yet, despite the importance and significance of the techniques as engineering tools, the techniques are not much used as standard penetration test (SPT) by practicing engineers. The possible explanations are cost and operational difficulties of the surveys as well as sophistication and complexity of the devices. An in-hole seismic method has been developed to meet the requirement of economical testing cost and practicality in engineering practice to measure dynamic soil properties. The prototype in-hole probe developed herein is small and light enough to be fit in three-inch boreholes and to be handled with bare hands. The performance of the source has been evaluated through extensive crosshole tests at various sites. The in-hole seismic method was adopted at three test sites and verified by comparing with crosshole results.

Interpretation of Geophysical and Engineering Geology Data from a Test Site for Geological Field Trip in Jeungpyung, Chungbuk (충북 증평 지질학습장 시험부지에 대한 물리탐사 및 지질공학 자료의 해석)

  • Kim, Kwan-Soo;Yun, Hyun-Seok;Sa, Jin-Hyeon;Seo, Yong-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.339-352
    • /
    • 2016
  • The best way of investigating the physical and mechanical properties of subsurface materials is the combined interpretation of data from borehole geophysical surveys and geotechnical experiments with rock samples. In this study two surface seismic surveys with refraction and surface-wave method are alternatively conducted for downhole seismic surveys in test site for geological field trip in Jeungpyung, Chungbuk. P- and S-wave velocity structures are delineated by refraction and MASW (multichannel analysis of shear waves) methods, respectively. Possion's ratio section, reconstructed from P- and S-wave velocities, is correlated to the outcrop geological features consisting of reddish sedimentary rock, gray volcanic rock, and joints/fractures. In addition, rock samples representative for reddish sedimentary and gray volcanic features are geotechnically analyzed to provide physical, mechanical properties, and elastic modulus. Dynamic elastic moduli estimated from geophysical data is found to be higher than the one from geotechnical data. Reddish sedimentary rock characterized with low porosity and moisture content corresponds to the zone of low electrical resistivities and their small variations in the resistivity sections between the rainy and dry days. This trend suggests that the weathered gray volcanic rock and the nearby fractures with higher low porosity and moisture content are interpreted to be good carrier especially in rainy season.

Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

  • Xu, Huai-Bing;Zhang, Chun-Wei;Li, Hui;Tan, Ping;Ou, Jin-Ping;Zhou, Fu-Lin
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.281-303
    • /
    • 2014
  • In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

Response Analysis of RC Bridge Pier with Various Superstructure Mass under Near-Fault Ground Motion (근단층지반운동에 대한 상부구조 질량 변화에 따른 RC 교각의 응답분석)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.667-673
    • /
    • 2010
  • The near fault ground motion (NFGM) is characterized by a single long period velocity pulse with large magnitude. NFGMs have been observed in recent strong earthquakes, Northridge (1994), Japan Kobe (1995), Turkey Izmit (1999), China Sichuan (2008), Haiti (2010) etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far field ground motion (FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this research is to investigate and analyze the seismic response of reinforced concrete bridge piers subjected to near-fault ground motions. The seismic performance of six RC bridge piers depending on three confinement steel ratios and three superstructure mass was investigated on the shaking table. From these experimental results, it was confirmed that the reduction of seismic performance was observed for test specimens with lower confinement steel ratio or more deck weight. The displacement ductility of RC bridge piers in terms of the stiffness degradation is proposed based on test results the shaking table.

Deformation Measurement of Roadbed in Full-scale Field Test to Determine an Optimum Trackbed of High-Speed Railway (고속철도 노반의 최적단면 결정을 위한 실대형 모형시험에서의 노반 변형 계측)

  • Jung, Young-Hoon;Kim, Hak-Sung;Byeon, Bo-Hyeon;Lee, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2821-2829
    • /
    • 2011
  • Since the KTX was in operation in 2004, a number of researches on increasing the train speed have been conducted. Currently, the Honam High-speed train system is designed for the operation velocity of 350km/h. The societal demand expects higher operation speed, whereas the existing construction method and design specification are questioned in the KTX operation in the velocity over 350 km/h. In this study, a full-scale model test was conducted to obtain the preliminary data that is necessary to understand deformation characteristics of the reinforced road bed and the subgrade layers. In the full-scale model test, direct arrival seismic tests, crosshole seimic test, in-situ bender element test and sensing bar test were employed to measure the stiffness and deformation of the trackbed. The systematic analysis on the different set of measurements enhances the understanding of the behavior of the trackbed.

  • PDF

Analysis on the Characteristics of the Landslide in Maeri (III) - With a Special Reference on Slope Stability Analysis - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (III) - 사면(斜面)의 안정해석(安定解析)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak;Youn, Ho-Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.377-386
    • /
    • 2005
  • This study was carried out to analyse the landslide characteristics by ground investigation, borehole image processing system, field seismic test, laboratory test and ground stability analysis at the landsliding area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. Region I needs to install data logger system to monitor a land displacement during the heavy rainfall events because the region can be liable to occur the land slide by land creeping. It is needed to restore rapidly, if the land displacement occurs in Region I. Region II needs to monitor and repair because of the possibility of slope failure by long-term soil loss. Region III needs constructions to remove ground runoff and ground water to be infiltrated from talus. Region IV where is a stable region, needs to be protected from land cutting or other man-made damage.