• 제목/요약/키워드: field plate load

검색결과 200건 처리시간 0.023초

설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009)

  • 한화택;이대영;김서영;최종민;백용규;권영철
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

로드셀을 이용한 컬링 스위핑 힘 측정 장치 개발 (Development of a force measurement device for curling sweeping with load cells)

  • 이상철;김태완;길세기;최상협
    • 한국융합학회논문지
    • /
    • 제8권11호
    • /
    • pp.49-56
    • /
    • 2017
  • 컬링 스위핑 동작은 컬링 스톤의 위치를 조절하는 중요한 동작 중 하나이며, 스위핑 속도와 브룸 패드에 가해지는 힘이 중요한 연구 대상이다. 본 연구에서는 컬링 스위핑 동작에서 컬링 브룸 패드에 가해지는 힘을 측정할 수 있는 장비를 개발하였으며, 두 개의 로드셀을 브룸 패드와 패드 홀더 사이에 장착하는 구조를 이용하였다. 로드셀에서 발생되는 아날로그 신호는 마이크로 제어기를 이용하여 초당 약 300회의 속도로 샘플링을 수행한 후 10 bit 디지털 신호로 변환하였다. 3개의 M1 급 분동을 이용하여 로드셀의 교정과 측정된 전기 신호를 질량(힘)으로 환산하는 회귀 방정식을 추출하였으며, 브룸의 무게 증가를 최소화하기 위해서 웨어러블 장비로 구성하였다. 스포츠 분야에서 힘 측정 시 기준 장비로 사용하는 지면 반력기와 개발된 장비에 동일한 힘을 가하면서 측정된 측정값 차이는 약 $0.909{\pm}1.375N$ (평균과 표준 편차)로 측정되었다. 개발된 장비는 스위핑 동작과 유사한 힘 측정을 필요로 하는 다른 종류의 연구에도 적용이 가능할 것으로 판단된다.

Soft-Baking 처리를 통한 용액 공정형 In-Zn-O 박막 트랜지스터의 전기적 특성 향상 (Improvement in Electrical Characteristics of Solution-Processed In-Zn-O Thin-Film Transistors Using a Soft Baking Process)

  • 김한상;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.566-571
    • /
    • 2017
  • A soft baking process was used to enhance the electrical characteristics of solution-processed indium-zincoxide (IZO) thin-film transistors (TFTs). We demonstrate a stable soft baking process using a hot plate in air to maintain the electrical stability and improve the electrical performance of IZO TFTs. These oxide transistors exhibited good electrical performance; a field-effect mobility of $7.9cm^2/Vs$, threshold voltage of 1.4 V, sub-threshold slope of 0.5 V/dec, and a current on/off ratio of $2.9{\times}10^7$ were measured. To investigate the static response of our solutionprocessed IZO TFTs, simple resistor load type inverters were fabricated by connecting a resistor (5 or $10M{\Omega}$). Our IZO TFTs, which were manufactured using the soft baking process at a baking temperature of $120^{\circ}C$, performed well at the operating voltage, and are therefore a good candidate for use in advanced logic circuits and transparent display backplanes.

수정변형률 영향계수에 근거한 직사각형 및 복합 얕은기초 침하량 산정법 (Improved Strain Influence Diagram and Settlement Estimation for Rectangular and Multiple Footings in Sand)

  • 박동규;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.633-640
    • /
    • 2005
  • Most existing methods for the footing settlement estimation are for either isolated or strip footings. No sufficient details are available for settlement calculation of footings with different shapes and multiple footing conditions, which are commonly adopted in actual construction projects. In this paper, estimation of footing settlements for various footing conditions of different shapes and multiple conditions is investigated based on Schmertmann's method with focus on values of the strain influence factor $I_z$. In order to examine the effect of multiple footing conditions, field plate load tests are performed in sands using single and double plates. 3D non-linear finite element analyses are also performed for various footing conditions with different footing shape and distance ratios. Results obtained in this study indicate that there are two significant components in the strain influence diagram that need to be taken into account for settlement estimation of rectangular and multiple footings: depth of $I_{zp}$ and depth of strain influence zone. Based on results from experimental and 3D non-linear finite element analyses, improved strain influence diagrams available for various footing conditions are proposed.

  • PDF

가상암반층의 깊이를 고려한 아스팔트 포장체의 층별 탄성계수 추정기법의 개발 (A Study on the Backcalculation of Layer Moduli of Asphalt Pavement System by Contemplating the Depth to Virtual Bedrock)

  • 김수일;이광호
    • 대한토목학회논문집
    • /
    • 제13권4호
    • /
    • pp.87-99
    • /
    • 1993
  • 본 연구에서는 비파괴 시험장비인 FWD를 사용하여 아스팔트 콘크리트 포장체 각 층의 탄성계수를 추정할 때 고려하여야 하는 가상암반층의 깊이를 FWD의 충격지속시간과 충격하중에 의한 포장체내의 압축과 속도로부터 산정할 수 있는 알고리즘을 제시하였다. 또한 FWD 시험자료를 입력치로하여 포장체 각 층의 탄성계수를 추정하는 전산 프로그램인 MFPD에 본연구에서 제시한 알고리즘을 적용 보완하였다. 보완된 MFPD의 탄성계수 추정결과에 대한 타당성을 살피기 위하여 FWD를 제작하여 현장시험을 실시하였으며 아울러 검증시험을 병행 실시하였다. 검증시험으로는 FWD 시험위치에서의 평판재하시험, 채취시료의 실내시험(마샬안정도시험, 압축시험), 표면파시험을 실시하였다. 이들 시험성과를 비교분석한 결과 가상암반층을 고려할 수 있도록 보완한 MFPD의 역산결과가 충분히 신뢰성 있음을 알 수 있었다.

  • PDF

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

Effect of bond and bidirectional bolting on hysteretic performance of through bolt CFST connections

  • Ajith, M.S.;Beena, K.P.;Sheela, S.
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.315-329
    • /
    • 2020
  • Through bolt connections in Concrete Filled Steel Tubes (CFSTs) has been proved to be good in terms of seismic performance and constructability. Stiffened extended end plate connection with full through type bolt helps to avoid field weld altogether, and hence to improve the quality of joints. An experimental study was conducted on the hysteretic performance of square interior beam-column connections using flat extended end plates with through bolt. The study focuses on the effect of the bond between the tie rod and the core concrete on the cyclic performance of the joint. The study also quantifies how much the interior joint is getting strengthened due to the confinement effect induced by bi-directional bolting, which is widely used in 3D moment resisting frames. For a better understanding of the mechanism and for the prediction of shear capacity of the panel zone, a mathematical model was generated. The various parameters included in the model are the influence of axial load, amount of prestress induced by bolt tightening, anchorage, and the concrete strut action. The study investigates the strength, stiffness, ductility, and energy dissipation characteristics. The results indicate that the seismic resistance is at par with American Institute of Steel Construction (AISC) seismic recommendations. The bidirectional bolting and bond effect have got remarkable influence on the performance of joints.

십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰 (Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • 제3권2호
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF

상온 능동형 자기 재생 냉동기의 개발 (Development of the active magnetic regenerative refrigerator for room temperature application)

  • 박인명;김영권;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory

  • Zarga, Djaloul;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.389-410
    • /
    • 2019
  • In this article, a simple quasi-3D shear deformation theory is employed for thermo-mechanical bending analysis of functionally graded material (FGM) sandwich plates. The displacement field is defined using only 5 variables as the first order shear deformation theory (FSDT). Unlike the other high order shear deformation theories (HSDTs), the present formulation considers a new kinematic which includes undetermined integral variables. The governing equations are determined based on the principle of virtual work and then they are solved via Navier method. Analytical solutions are proposed to provide the deflections and stresses of simply supported FGM sandwich structures. Comparative examples are presented to demonstrate the accuracy of the present theory. The effects of gradient index, geometrical parameters and thermal load on thermo-mechanical bending response of the FG sandwich plates are examined.