• Title/Summary/Keyword: field permeability test

Search Result 171, Processing Time 0.031 seconds

Evaluation of Infiltration Characteristics of Rainfall in Gneiss Weathered Soil by a Field Monitoring (현장 강우계측을 통한 편마암 풍화토층의 침투특성 평가)

  • Kim, Man-Il;Chae, Byung-Gon;Han, Byung-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.567-576
    • /
    • 2008
  • It is possible to understand rainfall infiltration characteristics by identification of wetting front in the soil. The wetting front by rainfall infiltration has close relationships among soil density, grain size distribution, and permeability coefficient in the soil. The infiltration velocity is a similar concept of permeability coefficient in the soil. In this study, infiltration velocity of rainfall was calculated by a field monitoring of volumetric water contents at the depths of 50 cm and 80 cm below the surface in the gneiss weathered soil. The calculated field infiltration velocity was compared with a permeability coefficient by a laboratory soil test using undisturbed soil samples in the study area. The permeability coefficient of the soil sample is $3.15{\times}10^{-3}cm/sec$, while the field infiltration velocity is $1.87{\times}10^{-3}cm/sec$. It is interpreted that the lower infiltration velocity is induced by complicate condition of porosity and grain size distribution of soil in the field. The rainfall intensity which influences on the volumetric water content and infiltration velocity is more than 20 mm/day resulting in expansion of wetting front in the soil.

A Study on the Performance Evaluation and Comparison of Porous and Drainage Pavement Types (투수성 포장과 배수성 포장 구조형식의 성능평가 및 비교 연구)

  • Kim, Dowan;Jeong, Sangseom;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.47-57
    • /
    • 2018
  • PURPOSES : The permeable pavement type has been rapidly developed for solving problems regarding traffic noise in the area of housing complex and heavy rainwater drainage in order to account for the climate change. In this regards, the objective of this study is to figure out the characteristics of pavement types. METHODS : The laboratory test for deriving optimum asphalt content (OAC) was conducted using the mixtures of the permeable asphalt surface for the pavement surface from Marshall compaction method. Based on its results, the pavement construction at the test field was conducted. After that, the site performance tests for measuring the traffic noise, strength and permeability were carried out for the relative evaluation in 2 months after the traffic opening. The specific site tests are noble close proximity method (NCPX), Light falling deflectometer test (LFWD) and the compact permeability test. RESULTS : The ordered highest values of the traffic noise level can be found such as normal dense graded asphalt, drainage and porous structure types. In the results from LFWD, the strength values of the porous and drainage asphalt types had been lower, but the strength of normal asphalt structure had relatively stayed high. CONCLUSIONS :The porous structure has been shown to perform significantly better in permeability and noise reduction than others. In addition to this study, the evaluation of the properties and the determination of the optimum thickness for the subgrade course under the porous pavement will be conducted using ground investigation technique in the further research.

A Study on the Characteristics of Infiltration of Sea Dyke by Field Investigation and Seepage Model Test (현장조사와 침투모형시험을 통한 방조제 침투특성 연구)

  • Park, Choon-Sik;Kim, Jong-Hwan;Lee, Sun-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.247-256
    • /
    • 2012
  • The purpose of this study is to decide the permeability and the rate of flow in a way of both site investigation and backward analysis and the most reasonable numerical analysis by performing a seepage model test for measuring the deformation swept volume of the embankment body in order to review a stability of the sea dyke being composed of multi-layers depending on variation of infiltration. As a result of the review, it could be forecasted that sweeping loss would be taken place at the boundary between bed protection works and embankment materials of the sea dyke due to a permeability difference of the multi-layered bed foundation structures and the sea dyke deformation would be occurred as a result thereby. As result of a numerical analysis for the seepage model test, it could be observed that critical velocity method was found to be smaller than the numerical analysis value but its tendency was similar and therefore it was judged that this method could be applied for the actual cross section.

Permeability Reduction Model of Soil-Geotextile System Induced by Clogging (폐색으로 인한 흙/부직포 시스템의 투수능 저하 모델)

  • 이인모;김주현
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.107-116
    • /
    • 2000
  • In this study, the permeability reduction in the soil-filter systems due to clogging phenomenon was evaluated. An extensive research program was performed using two typical weathered residual soils which were sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil were performed: one was the filtration test(cross-plane flow test); and the other was the drainage material in the field. The compatibility of the sol-filter system was investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system was evaluated by changing several testing conditions. Also, experimental results of the permeability reduction are compared with the results obtained from the theoretical model which can monitor the spatial variation of the permeability with time.

  • PDF

A Study on Similarity Rule of Loading Period and Thickness with One-dimensional Consolidation Process for Clay (점토의 1차원 압밀과정에 있어서 재하시간과 층두께에 대한 상사법칙에 관한 연구)

  • Kim, Jae Young;Ohshima, Akihiko
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.369-376
    • /
    • 2006
  • Similarity rule in order to predict the field settlement and consolidation time from oedometer test is not clear because of the thickness, loading time, rate of loading increase, dependence on strain inherent of clay. To investigate the one-dimensional consolidation tests with permeability tests varied loading period and specimen thickness were carried out the application of similarity rule. Main conclusions are 1) f(=1+e)-logk line is a unique property of the soil, 2) $c_{\nu}$, k need no correction, 3)similarity rule is depends on the positions of f-logp line and primary consolidation line.

Estimation of Permeability and Initial Pressure in Reservoir by DFIT Data Analysis (DFIT 자료 해석을 통한 저류층의 투과도 및 초기압력 추정)

  • Kim, Tae Hong;Lee, Sung Jun;Lee, Kun Sang
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.169-179
    • /
    • 2013
  • Well testing in unconventional reservoirs, such as tight or shale gas formations, presents considerable challenges. It is difficult to estimate the reservoir properties in ultra-low permeability formation because of poor inflow prior to stimulation and excessive test duration. Moreover, radial flow may not develop in hydraulically fractured horizontal wells. For these reasons, the cost of test is high and the accuracy is relatively low. Accordingly, industry is turning to an alternate testing method, diagnostic fracture injection test (DFIT), which is conducted prior to the main hydraulic fracture treatments. Nowadays, DFIT are regarded as the most practical way to obtain good estimates of reservoir properties in unconventional reservoirs. Various methods may be used for interpreting DFIT data. This paper gives an explanation of those methods in detail and examines three actual field data. These show how various analysis methods can be applied to consistently interpret fracture closure pressure and time, as well as before and after closure flow regimes and reservoir properties from field data.

Engineering Characteristics of Slime Generated by Application of Deep Mixing Method (심층혼합공법 적용시 발생하는 슬라임의 공학적 특성)

  • Jun, Sanghyun;Park, Byungsoo;Lee, Haeseung;Yoo, Namjae;Moon, Mansik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.99-103
    • /
    • 2009
  • This research is the result of investigating engineering characteristics of slime generated during construction of deep mixing method. Mechanical characteristics of slime have been studied through literature review and laboratory tests of unconfined compression test, permeability test and settling tests were performed. As result of field observation of slime being generated, slime started to be produced right after flight auger was penetrated into a ground and its amount was increased in progress. Unconfined compressive strength of specimen with slime obtained from in field was measured in the range of $929.7{\sim}3,509.8kN/m^2$ and the value of unconfined compressive strength was found to be changed significantly with mixing ratio of soil, cement and binder. Permeability of them was measured in the range of $4.53{\times}10^{-7}{\sim}6.62{\times}10^{-6}cm/sec$ so that the mixture was appropriate as a impervious barrier. It was also know that the value of permeability was changed with the mixing ratio of binder. As test results of solidifying slime specimen prepared in the laboratory, good quality of cement mixture with coarse soil of sand were produced, compared with fine soils of silt and clay.

  • PDF

Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level (강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정)

  • Park, Seunghyuk;Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.303-314
    • /
    • 2019
  • Surface permeability and shallow geological structures play significant roles in shaping the groundwater recharge of shallow aquifers. Surface permeability can be characterized by two concepts, intrinsic permeability and hydraulic conductivity, with the latter obtained from previous near-surface geological investigations. Here we propose a hydraulic equation via the cross-correlation analysis of the rainfall-groundwater levels using a regression equation that is based on the cross-correlation between the grain size distribution curve for unconsolidated sediments and the rainfall-groundwater levels measured in the Gyeongju area, Korea, and discuss its application by comparing these results to field-based aquifer test results. The maximum cross-correlation equation between the hydraulic conductivity derived from Zunker's observation equation in a sandy alluvial aquifer and the rainfall-groundwater levels increases as a natural logarithmic function with high correlation coefficients (0.95). A 2.83% difference between the field-based aquifer test and root mean square error is observed when this regression equation is applied to the other observation wells. Therefore, rainfall-groundwater level monitoring data as well as aquifer test are very useful in estimating hydraulic conductivity.

Analysis of the Physical and Mechanical Properties of Injected High-Density Polyurethane from Laboratory Experiments and Field Tests (실내실험 및 현장실험을 통한 고밀도 폴리 우레탄 공법의 물리·역학적 특성 분석)

  • Choi, Junyoung;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.83-101
    • /
    • 2021
  • The high-density polyurethane method uses the instantaneous expansion pressure of injected material to stabilize soft ground, allowing reinforcement, restoration, and construction to be carried out in suboptimal ground conditions. Under normal and, even poor conditions, the method is easily applied because the working time is very short. The method is environmentally friendly and results have excellent durability. The purpose of this study was to verify the physical and mechanical properties of high-density polyurethane in the ground. Initial testing of strength, direct shear, and soil environment stability was followed by testing for permeability in order to address environmental concerns. The results of the experiments showed that the internal friction angle was about twice as high and the adhesion was about 2.5 to 3.5 times higher than for dense and hard clay, and that the permeability factor was significantly lower compared with the existing grouting method, within the range of 1.0 × 10-5.

Development and Application of Low Permeable Concrete for Underground Structures (지하구조물을 위한 수밀콘크리트의 개발 및 실용화)

  • Paik, S.H.;Park, S.S.;Park, J.Y.;Paik, W.J.;Um, T.S.;Choi, L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.259-262
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, was compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and field test of low permeable concrete using fly ash were performed. From this study, fly ash concrete can control the penetration of water and chloride ion effectively by forming dense micro-structure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF