• Title/Summary/Keyword: field permeability

Search Result 559, Processing Time 0.031 seconds

Prediction of Field Permeability Using by Artificial Neural Network (인공신경망을 이용한 현장투수계수 예측)

  • Kim, Young-Su;Jung, Sung-Gwan;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.97-104
    • /
    • 2009
  • In this study, artificial neural network was performed using the data of soils characteristic value, standard penetration test, and field permeability test of the 12 embankment that are located in the near Nak-dong and Kum-ho river to estimate the coefficient of field permeability of river embankment. The 89 data of total 108, 82% was used in learning step, and the other 19 data was used in estimation step. Also the results of generally used empirical equations were compared with those of artificial neural network for evaluation of application. As results, all of the coefficient of field permeability by empirical equation showed below 0.4 in terms of the coefficient of correlation with the measured values, but the coefficient of correlation of the predicted results by artificial neural network was up 0.8 in the all case. Therefore artificial neural network could predict more the precise field permeability well than the empirical equations.

The permeability charateristic of Z-type sheet pile joints under water sealing conditions (Z형 강널말뚝의 오염물질 차단효과)

  • Hong, Seung-Seo;Lee, Yong-Soo;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1283-1288
    • /
    • 2009
  • In general steel sheet piles are used in the containment system, which are vertical barrier systems for waste disposal and landfill purposes, and roads in excavation for temporary structure. This paper presents case study of the use of an interlocking sheet pile for water and containment. Cut-off Z-type sheet pile joints are investigated to determine their permeability from the field test. Four different joint sealing materials are used in field test. The results showed joint permeability is significant time-dependent and joint-dependent. These are explored and conclusions on permeability characteristics of different sealants are noted. A case study gives a design example as well as suggestion on permeability and water tightness can be implemented in using the sheet pile barrier in civil and environment works. From the test results, the effective sealing programs of sheet pile interlocks are suggested.

  • PDF

Permeability of CoZrNb film with thickness (CoZrNb막의 두께에 따른 투자율의 변화)

  • Hoe, J.;Kim, Y.H.;Shin, K.H.;Sa-Gong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.443-446
    • /
    • 2001
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field(H$\sub$k/) as a function of a thickness of sputtered amorphous CoZrNb thin film with high saturation magnetostriction and excellent soft magnetic property are investigated. In order to make a uniaxial anisotropy, thin film was subjected to post annealing with a static magnetic field with 1KOe intensity at 250, 300, and 320$^{\circ}C$ for 2 hour. Anisotropy field(H$\sub$k/)of thin film is measured by using MH loop tracer. Its magnetic permeability of thin film is measured over the frequency range from 1 MHz to 750MHz. It has shown that the magnetic permeability of amorphous CoZrNb thin film is decreased due to the skin effect with increasing a thickness of CoZrNb thin film, and hence its driving frequency is lowered.

  • PDF

Impedance of CoZrNb Film as a Function of Frequency (CoZrNb막의 주파수에 따른 임피던스의 변화)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;Park, K.I.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.778-781
    • /
    • 2002
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in the low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field$(H_k)$ as a function of a thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and excellent soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and $320^{\circ}C}$ respectively for 2 hours. Anisotropy field$(H_k)$ of film is measured by using a MH loop tracer. Its magnetic permeability of a film is measured over the frequency range from 1 MHz to 750MHz. It has shown that the magnetic permeability of amorphous CoZrNb film is decreased due to the skin effect with increasing a thickness of the CoZrNb film, and hence its driving frequency is lowered. And, it was examined on the permeability and impedance to fabricate the MI sensor which acts at a low frequency by thickening a CoZrNb film relatively.

  • PDF

Prediction of Permeability for Braided Preform (브레이드 프리폼의 투과율 계수 예측)

  • Youngseok Song;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.184-187
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional circular braided preform is critical to understand the resin transfer molding process of composites. The permeability can be predicted by considering resin flow through the multi-axial fiber structure. In this study, permeability tensor for a 3-D circular braided preform is calculated by solving a boundary problem of a periodic unit cell. Flow field through the unit cell is obtained by using a 3-D finite volume method (FVM) and Darcy's law is utilized to obtain permeability tensor. Flow analysis for two cases that a fiber tow is regarded as impermeable solid and permeable porous medium is carried out respectively. It is found that the flow within the intra-tow region of the braided preform is negligible if inter-tow porosity is relatively high but the flow through the tow must be considered when the porosity is low. To avoid checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity variation is proposed on the basis of analytic solutions. Permeability of the braided preform is measured through a radial flow experiment and compared with the permeability predicted numerically.

  • PDF

Techniques to Estimate Permeability Based on Spectral Induced Polarization Survey (광대역유도분극 탐사에 기초한 유체투과도 예측기법들)

  • Kim, Bitnarae;Cho, AHyun;Weller, Andreas;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.55-69
    • /
    • 2020
  • Permeability-analyzing methods commonly involve small-scale drilling, such as pumping or slug test, but it is difficult to identify overall distribution of permeability of the entire target sites due to high cost and time requirement. Spectral induced polarization (SIP) method is known to be capable of providing distributions of both the porosity and the pore size, the two major parameters determining permeability of the porous medium. The relationship between SIP variables and permeability has been studied to identify the hydrological characteristics of target sites. Kozeny-Carman formula has been improved through many experiments to better predict fluid permeability with electrical properties. In this work, the permeability prediction techniques based on SIP data were presented in accordance with the hydrogeological and electrical characteristics of a porous medium. Following the summary of the techniques, various models and related laboratory experiments were analyzed and examined. In addition, the field applicability of the prediction model was evaluated by field case analysis.

Comparison of Different Permeability Models for Production-induced Compaction in Sandstone Reservoirs

  • To, Thanh;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.367-381
    • /
    • 2019
  • We investigate pore pressure conditions and reservoir compaction associated with oil and gas production using 3 different permeability models, which are all based on one-dimensional radial flow diffusion model, but differ in considering permeability evolution during production. Model 1 assumes the most simplistic constant and invariable permeability regardless of production; Model 2 considers permeability reduction associated with reservoir compaction only due to pore pressure drawdown during production; Model 3 also considers permeability reduction but due to the effects of both pore pressure drawdown and coupled pore pressure-stress process. We first derive a unified stress-permeability relation that can be used for various sandstones. We then apply this equation to calculate pore pressure and permeability changes in the reservoir due to fluid extraction using the three permeability models. All the three models yield pore pressure profiles in the form of pressure funnel with different amounts of drawdown. Model 1, assuming constant permeability, obviously predicts the least amount of drawdown with pore pressure condition highest among the three models investigated. Model 2 estimates the largest amount of drawdown and lowest pore pressure condition. Model 3 shows slightly higher pore pressure condition than Model 2 because stress-pore pressure coupling process reduces the effective stress increase due to pore pressure depletion. We compare field data of production rate with the results of the three models. While models 1 and 2 respectively overestimates and underestimates the production rate, Model 3 estimates the field data fairly well. Our result affirms that coupling process between stress and pore pressure occurs during production, and that it is important to incorporate the coupling process in the permeability modeling, especially for tight reservoir having low permeability.

Analysis of Permeability Characteristic for Z type Steel Sheet Pile by Field Test (현장시험 시공을 통한 Z형 강널말뚝의 현장차수특성 분석)

  • 이용수;정하익;홍승서;이광범;김상진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.325-330
    • /
    • 2000
  • In general steel sheet pile use the containment system, vertical barrier systems for waste disposal and landfill purposes, roads in excavation which have a more permanent character or temporary structure. The sheet pile joints between section of the wall are sealed with a filter material arid the resistance to seepage is a function of the type of material employed. The aim of this paper is to review a characteristic of permeability for Z type sheet pile by field test in various condition.

  • PDF

Degradation Evaluation of 1Cr-lMo-0.25V Steel by Measuring Reversible Magnetic Permeability (가역 투자율 측정에 의한 1Cr-1Mo-0.25V 강의 열화도 평가)

  • Ryu, Kwon-Sang;Kim, Yong-Il;Nahm, Seung-Hoon;Yu, Kwang-Min;Cho, Youk;Son, De-Rac
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.445-450
    • /
    • 2000
  • The integrity of the turbine rotors can be assessed by measuring reversible permeability and Vickers hardness of the aged rotors at service temperature. The measurement system of reversible permeability, which measured by applied alternating perturbing magnetic field, was constructed in order to evaluate material degradation, nondestructively. The test specimen was 1Cr-1Mo-0.25V steel used widely for turbine rotor material, and the specimens were prepared by the isothermal heat treatment at $630\;^{\circ}C$. The reversible permeability of the test materials were measured at room temperature. The peak interval of reversible permeability and Vickers hardness decreased with the increase of degradation. The degradation of test material may be determined nondestructively by the lineality of Vickers hardness and the peak interval of reversible permeability.

  • PDF

The study on the initial permeability of poly-crystalline $MgFe_{2}O_{4}$ With frequency (주파수 변화에 따른 다결정 $MgFe_{2}O_{4}$의 초기 투자율 특성 연구)

  • 김성재;정명득;백종규
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.94-99
    • /
    • 1994
  • This work addresses the relationship between initial complex permeability and porosity in polycrystalline Mg-ferrite material. The initial permeability corresponds to Snoek theory except the sample with large grains. The frequency which initial real permeability, $\mu$' equal 1 due to domain rotation are found in the frequency range 50-80 [MHz]. Internal magnetic field which is considered as mainly anisotropy field is 100[Oe] which is obtained from the relationship between initial complex permeability and porosity in polycrystalline Mg-ferrite material. This is almost the half value of reported anisotropy field of single Mg-ferrite. The difference between them is almost due to domain wall effect in polycrystalIine Mg-ferrite material.

  • PDF