• Title/Summary/Keyword: field load testing

Search Result 154, Processing Time 0.027 seconds

Bridge load testing and rating: a case study through wireless sensing technology

  • Shoukry, Samir N.;Luo, Yan;Riad, Mourad Y.;William, Gergis W.
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.661-678
    • /
    • 2013
  • In this paper, a wireless sensing system for structural field evaluation and rating of bridges is presented. The system uses a wireless platform integrated with traditional analogue sensors including strain gages and accelerometers along with the operating software. A wireless vehicle position indicator is developed using a tri-axial accelerometer node that is mounted on the test vehicle, and was used for identifying the moving truck position during load testing. The developed software is capable of calculating the theoretical bridge rating factors based on AASHTO Load and Resistance Factor Rating specifications, and automatically produces the field adjustment factor through load testing data. The sensing system along with its application in bridge deck rating was successfully demonstrated on the Evansville Bridge in West Virginia. A finite element model was conducted for the test bridge, and was used to calculate the load distribution factors of the bridge deck after verifying its results using field data. A confirmation field test was conducted on the same bridge and its results varied by only 3% from the first test. The proposed wireless sensing system proved to be a reliable tool that overcomes multiple drawbacks of conventional wired sensing platforms designed for structural load evaluation of bridges.

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Field distribution factors and dynamic load allowance for simply supported double-tee girder bridges

  • Kidd, Brian;Rimal, Sandip;Seo, Junwon;Tazarv, Mostafa;Wehbe, Nadim
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • This paper discusses the field testing of two single-span double-tee girder (DTG) bridges in South Dakota to determine live load distribution factors (LLDFs) and the dynamic load allowance (IM). One bridge had seven girders and another had eight girders. The longitudinal girder-to-girder joints of both bridges were deteriorated in a way that water could penetrate and the joint steel members were corroded. A truck traveled across each of the two bridges at five transverse paths. The paths were tested twice with a crawl speed load test and twice with a dynamic load. The LLDFs and IM were determined using strain data measured during the field tests. These results were compared with those determined according to the AASHTO Standard and the AASHTO LRFD specifications. Nearly all the measured LLDFs were below the AASHTO LRFD design LLDFs, with the exception of two instances: 1) An exterior DTG on the seven-girder bridge and 2) An interior DTG on the eight-girder bridge. The LLDFs specified in the AASHTO Standard were conservative compared with the measured LLDFs. It was also found that both AASHTO LRFD and AASHTO Standard specifications were conservative when estimating IM, compared to the field test results for both bridges.

Structural Performance of an Advanced Compsites Bridge Superstructure for Rapid Installation (급속시공용 복합신소재 교량상부구조의 구조 성능)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • This paper describes the design, manufacturing process, testing, application, and assessment of capacity-ratings of the first all advanced composites bridge on a public highway system. In order to verify the bridge design prior to the field application, a sub-scale bridge superstructure was built and tested in the laboratory. The field load test results were compared with those of the finite element analysis for the verification of validity. To investigate its in-service performance, field load testing and visual inspections were conducted under an actual service environment. The paper includes the presentation and discussion for advanced composites bridge capacity rating based on the stress modification coefficients obtained from the test results. The test result indicates that the advanced composites bridge has no structural problems and is structurally performing well in-service as expected. Since these composite materials are new to bridge applications, reliable data is not available for their in-service performance. The results may provide a baseline data for future field advanced composites bridge capacity rating assessments and also serve as part of a long-term performance of advanced composites bridge.

  • PDF

Assessment of Reliability and Load Carrying Capacity of Aged Wharf Structure of Pier Type (노후된 잔교식 부두의 신뢰성 및 내하력 평가)

  • 조효남;김성훈;김종규;이승재;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.71-78
    • /
    • 1994
  • The main objectives of the study may be stated as follows : \circled1 the acquisition of fundamental updated data for the assessment of aged wharf structures of pier type based on systematic static/dynamic load testing \circled2 the study of techniques and methods for field testing \circled3 realistic safety and load carrying capacity assessment based on practical reliability analysis. In this study field testing of real structure is performed and the results are compared with those of the 2D and 3D linear structural analysis. It may be seen that the practical reliability methods can be applied for the safety and capacity assessment of aged wharf structures of pier type.

  • PDF

Study on Accelerated Life Test Design for a Gear Type Lubrication Pump for Automatic Transmission (자동변속기 윤활용 기어펌프의 가속 수명시험 설계에 관한 연구)

  • Park, Jong-Won;Jung, Dong-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.201-213
    • /
    • 2012
  • A gear type lubrication pump is an essential component of the powertrain and has a major role for supplying oil to the gears and bearings in automatic transmission with a hydraulic clutch. Therefore, the durability test code design of lubrication pump is very important to ensure the reliability of the entire transmission and the vehicle. In this study, the design process for the life testing of lubrication pump has been generalized by four steps. The four design steps of the life testing of lubrication pump consist of the configuration of load spectrum, rain flow counting and analysis of load level, the equivalent damage assessment and test code generation. In fact, the load spectrum should be obtained from the field operating condition but that kind of data is the top secret of manufacturers. This is not open to the public in general. So we could use the artificially simulated load spectrum instead of field obtained one and focused on the development of the general process for designing the life test of a gear type lubrication pump. Reliability goals for lubrication pump, pressure, torque, temperature and load spectrum, if present, as appropriate for the given test conditions, accelerated life testing for the lubrication pump can be designed by the developed design steps.

Development of Accelerated Equivalent Load Analysis Program using Cumulative Damage Theory (누적 손상 이론을 이용한 가속 등가 하중 분석 프로그램의 개발)

  • Kwon, J.H.;Gong, H.S.;Lee, K.Y.;Oh, C.S.;Jung, S.B.;Seol, I.H.;Kim, T.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.206-211
    • /
    • 2000
  • The accelerated testing technique using the equivalent load condition plays an important part in development process. However, in the industrial field, the theoretical background and advantages of this accelerated testing technique have been lack of understanding. Because the environmental durability condition forms the foundation of the accelerated testing technique, it is important to analyze the loading components and damage in service environment. In this work, we present the theoretical background and process for accelerated testing, and introduce our accelerated equivalent load analysis program. We developed the GUI program, and the user can easily obtain the result by selecting the program module.

  • PDF

Field Testing Methods on Early Shotcrete Strength for Tunnel Quality Control (터널의 품질관리를 위한 숏크리트 초기강도의 현장강도 시험기술)

  • Hong, Eui-Joon;Chang, Seok-Bue;Lee, Sung-Woo;Kim, Ki-Lim;Moon, Sang-Jo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.468-476
    • /
    • 2007
  • Generally, the strength of the field shotcrete is heavily dependent on the field mixing and spraying conditions so that it is different from the strength of the shotcrete mixed in laboratories. As a support member, the early strength of shotcrete unlike concrete as structural material is very important to the initial stabilization of the excavation face in tunnels. Therefore, the field methods to efficiently test the early strength of shotcrete have been highly required. This paper aimed to verify the pneumatic pin penetration test and the point load test for measuring the early strength of the field shotcrete. Through a series of uniaxial compression, pin penetration, and point load tests for the range of the early shotcrete strength, two equations to estimate reliably the uniaxial compressive strength by the pin penetration and the point load tests were derived. Field tests in working tunnel were carried out in order to estimate the economic efficiency. As a result, pin penetration method was proved to be the most effective method for testing the early strength of the field shotcrete.

  • PDF

Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

  • Ataei, Shervan;Tajalli, Mosab;Miri, Amin
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.703-718
    • /
    • 2016
  • Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.

S-N Curve Estimation of a KTX Structure for an Accelerated Life Testing (가속수명시험을 위한 KTX 구조물의 S-N 선도 추정)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Su-Han
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.384-389
    • /
    • 2008
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structure of KTX under operation conditions. However, actual fatigue life cannot be obtained if specimens are not adequate to the conventional fatigue test. Moreover component maker did not provide data of loading stress (S) - cycles at the failure (N). In this study, we suggest a prediction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data, and then, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule.

  • PDF