• 제목/요약/키워드: field investigation

검색결과 2,960건 처리시간 0.029초

데이터 민주주의(data democracy)에 대한 규범적 접근 (A Normative Approach to Data Democracy)

  • 박희진;김지성
    • 한국비블리아학회지
    • /
    • 제34권2호
    • /
    • pp.137-158
    • /
    • 2023
  • 디지털화가 급속도로 진행되는 현대 데이터 사회에서 데이터 활용에 있어 데이터의 개방성과 더불어 신뢰성 및 공정성 확보 또한 강조되고 있다. 본 연구는 다차원적 관점에서 데이터 민주주의 개념을 정의하고 규범적 가치의 요소를 제시함으로써 데이터 민주주의 체계와 현황을 파악하고 평가할 수 있는 지표 개발과 선정에 필요한 기초 자료를 제공하는 것을 목표로 한다. 우선 데이터 민주주의의 논의를 위한 토대로써 Kneuer(2016)의 개념을 토대로 자유롭고 공평한 접근, e-참여, e-정부를 e-민주주의의 주요 요소로 제시하였다. 이러한 e-민주주의의 규범적 원리를 토대로 데이터 거버넌스의 질 향상을 위해 데이터 민주주의 개념의 이해 및 실제 적용을 위한 데이터 민주주의의 규범적 프레임워크 및 구성요소로 포용성과 형평성, 참여, 민주적 주권을 도출하였다. 본 연구에서는 데이터 민주주의 실천을 위한 데이터 리터러시의 중요성을 강조하고, 문헌정보학에서 데이터 민주주의의 규범적 프레임워크에 근거한 새로운 교육과정 개발 및 평가에 관한 연구를 후속 과제로 제시하였다.

Impact of soft and stiff soil interlayers on the pile group dynamic response under lateral harmonic load

  • Masoud Oulapour;Sam Esfandiari;Mohammad M. Olapour
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.583-596
    • /
    • 2023
  • The interlayers, either softer or stiffer than the surrounding layers, are usually overlooked during field investigation due to the small thickness. They may be neglected through the analysis process for simplicity. However, they may significantly affect the dynamic behavior of the soil-foundation system. In this study, a series of 3D finite-element Direct-solution steady-state harmonic analyses were carried out using ABAQUS/CAE software to investigate the impacts of interlayers on the dynamic response of a cast in place pile group subjected to horizontal harmonic load. The experimental data of a 3×2 pile group testing was used to verify the numerical modeling. The effects of thickness, depth, and shear modulus of the interlayers on the dynamic response of the pile group are investigated. The simulations were conducted on both stiff and soft soils. It was found that the soft interlayers affect the frequency-amplitude curve of the system only in frequencies higher than 70% of the resonant frequency of the base soil. While, the effect of stiff interlayer in soft base soil started at frequency of 35% of the resonant frequency of the base soil. Also, it was observed that a shallow stiff interlayer increased the resonant amplitude by 11%, while a deep one only increased the resonant frequency by 7%. Moreover, a shallow soft interlayer increased the resonant frequency by 20% in soft base soils, whereas, it had an effect as low as 6% on resonant amplitude. Also, the results showed that deep soft interlayers increased the resonant amplitude by 17 to 20% in both soft and stiff base soils due to a reduction in lateral support of the piles. In the cases of deep thick, soft interlayers, the resonant frequency reduced significantly, i.e., 16 to 20%. It was found that the stiff interlayers were most effective on the amplitude and frequency of the pile group.

터널 콘크리트 라이닝 구조물의 성능저하 특성 (Characterization of deterioration of concrete lining in tunnel structures)

  • 김동규;정호섭;배규진;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제11권4호
    • /
    • pp.387-394
    • /
    • 2009
  • 터널구조물은 지하공간에 건설되며 육안으로 터널 배면상태를 확인하는 것이 불가능하기 때문에 유지 관리하는데 어려움이 있다. 본 연구에서는 재래식 터널의 주 지보재인 콘크리트 라이닝의 장기 내구성 및 성능저하 원인을 규명하기 위하여 준공된 지 약 40~70년이 경과된 7개의 철도 폐터널을 대상으로 현장조사 및 실내실험을 수행하였다. 그 결과, 조사 대상 터널 구조물의 콘크리트 라이닝은 준공년도에 관계없이 모든 구조물에서 다양한 형태의 균열이 조사되었으며 특히 시공이음부에 열화현상이 심각하게 나타났다. 터널 구조물의 콘크리트 라이닝 주변 지하 공간으로부터 유입되는 침출수의 유해이온은 콘크리트 열화에 직접적인 영향을 미치는 농도는 아니었으나 일정한 농도의 유해이온이 장기간 지속적으로 콘크리트 라이닝에 침식작용을 한 것으로 나타났다. 터널 구조물의 콘크리트 라이닝에서 측정한 비파괴 압축강도와 동일한 위치에서 채취한 코어시편을 대상으로 측정한 일축압축강도는 콘크리트 라이닝의 표면의 건전 여부에 따라 상이한 결과를 나타내었다.

A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation

  • Nasrine Belbachir;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed A. Al-Osta;Mofareh Hassan Ghazwani;Ali Alnujaie;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.433-443
    • /
    • 2023
  • The current paper discusses the dynamic and stability responses of cross-ply composite laminated plates by employing a refined quasi-3D trigonometric shear deformation theory. The proposed theory takes into consideration shear deformation and thickness stretching by a trigonometric variation of in-plane and transverse displacements through the plate thickness and assures the vanished shear stresses conditions on the upper and lower surfaces of the plate. The strong point of the new formulation is that the displacements field contains only 4 unknowns, which is less than the other shear deformation theories. In addition, the present model considers the thickness extension effects (εz≠0). The presence of the Winkler-Pasternak elastic base is included in the mathematical formulation. The Hamilton's principle is utilized in order to derive the four differentials' equations of motion, which are solved via Navier's technique of simply supported structures. The accuracy of the present 3-D theory is demonstrated by comparing fundamental frequencies and critical buckling loads numerical results with those provided using other models available in the open literature.

Mechanical and thermal stability investigation of functionally graded plates resting on visco-Pasternak foundation

  • Samira Hassiba Tagrara;Mohamed Mehdi hamri;Mahmoud Mohamed Selim Saleh;Mofareh Hassan Ghazwani;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.839-856
    • /
    • 2023
  • This work presents a simple four-unknown refined integral plate theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on Visco-Pasternak foundations. The proposed refined high order shear deformation theory has a new displacement field which includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Governing equations are deduced from the principle of minimum total potential energy and a Navier type analytical solution is adopted for simply supported FG plates. The Visco-Pasternak foundations is considered by adding the impact of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The accuracy of the present model is demonstrated by comparing the computed results with those available in the literature. Some numerical results are presented to show the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the mechanical and thermal buckling behaviors of FG plates.

지상라이다 자료를 이용한 자연사면의 변위 모니터링 (Monitoring of the Natural Terrain Behavior Using the Terrestrial LiDAR)

  • 박재국;이상윤;양인태;김동문
    • 대한토목학회논문집
    • /
    • 제30권2D호
    • /
    • pp.191-198
    • /
    • 2010
  • 사면의 변위는 산사태의 위험성을 예측할 수 있는 매우 중요한 인자이다. 따라서 사면의 변위는 지속적인 관측과 높은 정밀도의 관측이 요구된다. 최근에는 사면관측을 위해서 광섬유센서, GPS, Total Station, 계측기 등의 첨단장비가 활용되고 있다. 그러나 이러한 관측 장비는 경제성, 환경성, 편리성과 유지관리 측면에서 장비의 제약으로 인해 실제 현장적용이 부진한 상태이다. 그러므로 다양한 사면관측과 현장적용을 위해서는 실질적인 관측기술개발이 요구된다. 본 연구에서는 지상라이다의 사면 모니터링에 대한 적용 가능성을 분석하고자 하였으며, 사면조사와 사면유지관리를 위한 정보획득 기술로 제시하고자 하였다. 이를 위해서 본 연구에서는 지상라이다의 모니터링 정확도를 평가하였으며, 변위 발생 지역의 육안판독을 위한 그리드 분석을 실시하였다. 또한 사면 모니터링을 위한 방법론을 제시하였다.

Investigation of three-dimensional deformation mechanisms of existing tunnels due to nearby basement excavation in soft clay

  • Wanchun Chen;Lixian Tang;Haijun Zhao;Qian Yin;Shuang Dong;Jie Liu;Zhaohan Zhu;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.115-124
    • /
    • 2023
  • By conducting three-dimensional simulation with consideration of small-strain characteristics of soil stiffness, the effects of excavation geometry and tunnel cover to diameter ratio on deformation mechanisms of an existing tunnel located either at a side of basement or directly underneath the basement were systematically studied. Field measurements were used to verify the numerical model and model parameters. For basement excavated at a side of an existing tunnel, the maximum settlement and horizontal displacement of the tunnel are always observed at the tunnel springline closer to basement and tunnel crown, respectively, regardless of basement geometry. By increasing basement length and width by five times, the maximum movements of tunnel located at the side of basement and directly underneath the basement increase by 450% and 186%, respectively. Obviously, tunnel movements are more sensitive to basement length rather than basement width. For basement excavated at a side of an existing tunnel, tunnel movements at basement centerline become stable when basement length reaches 10 He (i.e., final excavation depth). Moreover, tunnel heaves due to overlying basement excavation become stable when the normalized basement length (L/He) is larger than 8.0. As tunnel cover to diameter ratio varies from 2.5 to 3.0, the maximum heave and tensile strain of tunnel due to overlying basement excavation decrease by up to 41.0% and 44.5%, respectively. If basement length is less than 8 He, the assumption of plane strain condition of basement-tunnel interaction grossly overestimates tunnel movements, and ignores tensile strain of tunnel along its longitudinal direction. Thus, three-dimensional numerical analyses are required to obtain a reasonable estimation of tunnel responses due to adjacent and overlying basement excavations in clay.

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

On vibration and flutter of shear and normal deformable functionally graded reinforced composite plates

  • Abdollahi, Mahdieh;Saidi, Ali Reza;Bahaadini, Reza
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.437-452
    • /
    • 2022
  • For the first time, the higher-order shear and normal deformable plate theory (HOSNDPT) is used for the vibration and flutter analyses of the multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) plates under supersonic airflow. For modeling the supersonic airflow, the linear piston theory is adopted. In HOSNDPT, Legendre polynomials are used to approximate the components of the displacement field in the thickness direction. So, all stress and strain components are encountered. Either uniform or three kinds of non-uniform distribution of graphene platelets (GPLs) into polymer matrix are considered. The Young modulus of the FG-GPLRC plate is estimated by the modified Halpin-Tsai model, while the Poisson ratio and mass density are determined by the rule of mixtures. The Hamilton's principle is used to obtain the governing equations of motion and the associated boundary conditions of the plate. For solving the plate's equations of motion, the Galerkin approach is applied. A comparison for the natural frequencies obtained based on the present investigation and those of three-dimensional elasticity theory shows a very good agreement. The flutter boundaries for FG-GPLRC plates based on HOSNDPT are described and the effects of GPL distribution patterns, the geometrical parameters and the weight fraction of GPLs on the flutter frequencies and flutter aerodynamic pressure of the plate are studied in detail. The obtained results show that by increasing 0.5% of GPLs into polymer matrix, the flutter aerodynamic pressure increases approximately 117%, 145%, 166% and 196% for FG-O, FG-A, UD and FG-X distribution patterns, respectively.

한강살리기사업에의한 한강 여주 구간의 하천 지형 변화 고찰 (Investigation of Changes in Fluvial Landforms in the Yeoju Reach of the Han River by the Han River Restoration Project)

  • 김종연
    • 한국지형학회지
    • /
    • 제27권2호
    • /
    • pp.29-46
    • /
    • 2020
  • In this study, changes in the fluvial landforms of the Yeoju section of the Han River, which was made up of the Han River Restoration Project, were examined through existing previous research data, government's environmental impact assessment data, satellite images, and field observations. For example, In the vicinity of Dori Island, the most upstream part of the study section, the location of the confluence of the Han River and Cheongmi Stream was changed, and it was found that a significant portion of the sand sedimentary layer disappeared. In the Bawuinupgubi area, the wetland, which is the first class in the ecological nature, was greatly modified, and the elevation of the ground rose as Gangcheon island and it was completely separated from the river by dredging The confluence of Geumdangcheon and the point bar of Yeonyang-ri in the south were also dredged, turned into an artificial waterfront park, and a chute channel remained in the form of a wetland was also developed as a recreational park. The deposional forms around Baekseok-ri islands also disappeared as dredging was carried out. Among the areas adjacent to the confluence of Bokcheon and Yangchon-ri Island, some sedimentay forms remains, but the abandonned channel between Yangchon-ri and the northern river bank has been changed into a riverside reservoir through dredging and embankment construction, and the waterway of the tributary river(Yazoo) has been greatly changed.