• Title/Summary/Keyword: field failure data

Search Result 403, Processing Time 0.026 seconds

Reinforcing Effects of Micro-Piles in a high Cut Slope (장대사면 내 억지말뚝의 억제효과 (현장 Case-Study 중심으로))

  • 정성윤;김경태;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.374-381
    • /
    • 2002
  • Several sensor systems are used to estimate the reinforceing effect of pile in hihg cut slopes, and to find a failure zone in slopes effectively. Inclinometer, extensometer and V/W sensor have shown a great potentiality to serve real time health monitoring of the slope structures. They were embedded or attached to the structures, we conducted field tests and test results have shown great solutions for sensor systems of Civil Engineering Smart Structures. This research is to seek for the relationships among the slope movement and the reinforceing effect of pile, and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the relationships. Also, the relationships between temperature and reinforceing effect of pile, and the strain distribution are estimated in this paper.

  • PDF

Operational Availability Analysis of KOMPSAT TTC System (KOMPSAT 관제시스템의 운용가용도 분석)

  • 장대익;고지환이성팔김대영
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.155-158
    • /
    • 1998
  • The KOMPSAT system incorporates multiple missions designed to provide various applications in the field of Korean peninsula observation covering land, sea and coastal zones. The missions are Korea cartography (1:25,000 scale maps of the Korean peninsula), biological oceanography and science instrument accommodation. The operational availability of KOMPSAT TTC system should be predicted more accurately because its failure has a significant influence on satellite command and tracking and on satellite data collection. In this paper, system availability structure of KOMPSAT TTC system are made and availability of KOMPSAT TTC system is analyzed aspect to the system operation in accordance with logistic condition.

  • PDF

Life Analysis and Reliability Prediction of Micro Switches based on Life Prediction Method (수명예측 방법에 따른 마이크로스위치의 수명분석 및 신뢰도 예측)

  • Ji, Jeoung-Geon;Shin, Kun-Young;Lee, Duk-Gyu;Son, Young-Jin;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.14-21
    • /
    • 2011
  • Reliability means that a product maintains its initial quality and performance at certain period of time(time, distance, cycle etc) under given condition without failure. Given conditions include both environmental condition and operating condition. Environmental condition means common natural environment such as temperature, humidity, vibration, and working condition means artificial environment such as voltage, current load, install place, hours of use, which occurs during using the product. In the field of railway vehicles, although components of railway vehicles with reliability are the trend of mandatory as persisting period of railway vehicles is extended, using components of railway vehicles is insufficient for the practical reliability assessment. but the meaning of the first railway operating agnecy to acquire the parts in the field, the data suggest the reliability of products if you can and can show the reliability of modular units and modular units can provide the reliability of if you can present reliability of the entire system is thought to be here. In this study, lifespan of micro-switch for master controller is analyzed and prediction is performed based on its field data considering the special circumstances of railway vehicles operating agency, such as a large number of trains operates on the same line.

  • PDF

Life Analysis and Reliability Prediction of Micro-Switches based on Life Prediction Method (수명예측 방법에 따른 마이크로스위치의 수명분석 및 신뢰도 예측)

  • Ji, Jung-Geon;Shin, Kun-Young;Lee, Duk-Gyu;Lee, Hi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-69
    • /
    • 2011
  • Reliability means that a product maintains its initial quality and performance at certain period of time(time, distance, cycle etc) under given condition without failure. Given conditions include both environmental condition and operating condition. Environmental condition means common natural environment such as temperature, humidity, vibration, and working condition means artificial environment such as voltage, current load, install place, hours of use, which occurs during using the product. In the field of railway vehicles, although components of railway vehicles with reliability are the trend of mandatory as persisting period of railway vehicles is extended, using components of railway vehicles is insufficient for the practical reliability assessment. but the meaning of the first railway operating agency to acquire the parts in the field, the data suggest the reliability of products if you can and can show the reliability of modular units and modular units can provide the reliability of if you can present reliability of the entire system is thought to be here In this study, lifespan of micro-switch for master controller is analyzed and prediction is performed based on its field data considering the special circumstances of railway vehicles operating agency, such as a large number of trains operates on the same line.

Analysis of Measurement Data for Stability of Seashore Waste Landfills (해안 폐기물매립지 안정을 위한 계측자료 분석)

  • Jang, Yeon-Soo;Choi, Jong-Sig;Ryu, Hye-Rim;Kim, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.947-954
    • /
    • 2008
  • Waste landfills built on weak soils have the possibilities of the failure of slope and foundation due to the disposed waste loads. To ensure the landfill will sustain its stability within a limited site area, it's necessary to investigate and understand the characteristics of soft land by identifying the requirements for waste filling and by quantitative field measurement and management of landfills. In this paper, the stability analyses are performed using the field measurement data of Gimpo #2 Metropolitan Landfil. For the stability analysis, Tominaga-Hashimoto method and Kuriharh method, which may be able to manage the stability of the landfill quantitatively, are used.

  • PDF

Life Analysis and Reliability Prediction of Micro-Switches based on Life Prediction Method

  • Ji, Jung-Geon;Shin, Kun-Young;Lee, Duk-Gyu;Song, Moon-Shuk;Lee, Hi-Sung
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Reliability means that a product maintains its initial quality and performance at a certain period of time (time, distance, cycle etc) under given condition without failure. The given conditions include both environmental condition and operating condition. Environmental condition means a common natural environment such as temperature, humidity, vibration, and working condition means an artificial environment such as voltage, current load, place for installment, and hours of use, which occurs during the life of the product. In the field of railway vehicles, it is mandatory to use a part with the proved reliability as the extension of the life of vehicle become highly necessary. But the reliable assessment method for the reliability of the part is insufficient. If the reliability of the railway vehicle parts could be assessed by using the field data, the reliability of the entire system could also be evaluated reliably. In this study, life span of micro-switch for master controller is analyzed and prediction is performed based on its field data given by an operator considering the special circumstances of railway vehicles such as the operation of a large number of trains on the same line.

Evolution of post-peak localized strain field of steel under quasi-static uniaxial tension: Analytical study

  • Altai, Saif L.;Orton, Sarah L.;Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.435-449
    • /
    • 2022
  • Constitutive modeling that could reasonably predict and effectively evaluate the post-peak structural behavior while eliminating the mesh-dependency in numerical simulation remains to be developed for general engineering applications. Based on the previous work, a simple one-dimensional modeling procedure is proposed to predict and evaluate the post-peak response, as characterized by the evolution of localized strain field, of a steel member to monotonically uniaxial tension. The proposed model extends the classic one-dimensional softening with localization model as introduced by (Schreyer and Chen 1986) to account for the localization length, and bifurcation and rupture points. The new findings of this research are as follows. Two types of strain-softening functions (bilinear and nonlinear) are proposed for comparison. The new failure criterion corresponding to the constitutive modeling is formulated based on the engineering strain inside the localization zone at rupture. Furthermore, a new mathematical expression is developed, based on the strain rate inside and outside the localization zone, to describe the displacement field at which bifurcation occurs. The model solutions are compared with the experimental data on four low-carbon cylindrical steel bars of different lengths. For engineering applications, the model solutions are also compared to the experimental data of a cylindrical steel bar system (three steel bars arranged in series). It is shown that the bilinear and nonlinear softening models can predict the energy dissipation in the post-peak regime with an average difference of only 4%.

A Fundamental Study on Detection of Weeds in Paddy Field using Spectrophotometric Analysis (분광특성 분석에 의한 논 잡초 검출의 기초연구)

  • 서규현;서상룡;성제훈
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.133-142
    • /
    • 2002
  • This is a fundamental study to develop a sensor to detect weeds in paddy field using machine vision adopted spectralphotometric technique in order to use the sensor to spread herbicide selectively. A set of spectral reflectance data was collected from dry and wet soil and leaves of rice and 6 kinds of weed to select desirable wavelengths to classify soil, rice and weeds. Stepwise variable selection method of discriminant analysis was applied to the data set and wavelengths of 680 and 802 m were selected to distinguish plants (including rice and weeds) from dry and wet soil, respectively. And wavelengths of 580 and 680 nm were selected to classify rice and weeds by the same method. Validity of the wavelengths to distinguish the plants from soil was tested by cross-validation test with built discriminant function to prove that all of soil and plants were classified correctly without any failure. Validity of the wavelengths for classification of rice and weeds was tested by the same method and the test resulted that 98% of rice and 83% of weeds were classified correctly. Feasibility of CCD color camera to detect weeds in paddy field was tested with the spectral reflectance data by the same statistical method as above. Central wavelengths of RGB frame of color camera were tried as tile effective wavelengths to distingush plants from soil and weeds from plants. The trial resulted that 100% and 94% of plants in dry soil and wet soil, respectively, were classified correctly by the central wavelength or R frame only, and 95% of rice and 85% of weeds were classified correctly by the central wavelengths of RGB frames. As a result, it was concluded that CCD color camera has good potential to be used to detect weeds in paddy field.

Measurements of Dark Area in Sensing RFID Transponders

  • Kang, J.H.;Kim, J.Y.
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • Radiofrequency(RF) signal is a key medium to the most of the present wireless communication devices including RF identification devices(RFID) and smart sensors. However, the most critical barrier to overcome in RFID application is in the failure rate in detection. The most notable improvement in the detection was from the introduction of EPC Class1 Gen2 protocol, but the fundamental problems in the physical properties of the RF signal drew less attention. In this work, we focused on the physical properties of the RF signal in order to understand the failure rate by noting the existence of the ground planes and noise sources in the real environment. By using the mathematical computation software, Maple, we simulated the distribution of the electromagnetic field from a dipole antenna when ground planes exist. Calculations showed that the dark area can be formed by interference. We also constructed a test system to measure the failure rate in the detection of a RFID transponder. The test system was composed of a fixed RFID reader and an EPC Class1 Gen2 transponder which was attached to a scanner to sweep in the x-y plane. Labview software was used to control the x-y scanner and to acquire data. Tests in the laboratory environment showed that the dark area can be as much as 43 %. One who wants to use RFID and smart sensors should carefully consider the extent of the dark area.

A Study on the Accelerated Life Test of Yaw Gearbox for Wind Turbine (풍력발전기용 Yaw gearbox의 가속 수명시험에 관한 연구)

  • Yong-Bum Lee;G. C. Lee;J. J. Lee;S. Y. Lim
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • The yaw gearbox is a key device in a wind power generator that improves power generation efficiency by rotating hundreds of tons (400 to 600 tons) of nacelle so that the blade reaches 90 degrees in the wind direction. Recently, installation sites have been advancing from land to sea as they have become super-large at (8-12) MW to increase the economic feasibility of wind power generators and utilize excellent wind resources, and the target life of large wind power generators is 25 to 30 years. The yaw gearbox of 6 to 12 sets is installed in a very complex place inside the nacelle on the tower with parallels, and it is important to secure the reliability of the yaw gearbox because if a failure occurs after installation, it costs tens to hundreds of times the price of a new product to restore. In this study, equivalent loads were calculated by analyzing failure mode and field data, accelerated life test conditions were established, and a test device was constructed to perform the accelerated life tests and performance tests to ensure the reliability of the gearbox.