• Title/Summary/Keyword: field emission properties

Search Result 864, Processing Time 0.038 seconds

Vacuum In-line Sealing Technology of the Screen-printed CNT-FEA

  • Kwon, Sang-Jik;Kim, Tae-Ho;Shon, Byeong-Kyoo;Cho, Euo-Sik;Lee, Jong-Duk;Uh, Hyung-Soo;Cho, Sung-Hee;Lee, Chun-Gyoo
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.6-11
    • /
    • 2003
  • We have fabricated a carbon nanotube field emission display (CNT-FED) panel with a 2-inch diagonal size by using a screen printing method and vacuum in-line sealing technology. The sealing temperature of the panel was around 390$^{\circ}C$ and the vacuum level was obtained with 1.4x$10^{-5}$torr at the sealing. When the field emission properties of a fabricated and sealed CNT-FED panel were characterized and compared with those of the unsealed panel which was located in a test chamber of vacuum level similar with the sealed panel. As a result, the sealed panel showed similar I-V characteristics with unsealed one and uniform light emission with very high brightness at a current density of 243 ${\mu}A/cm^2$, obtained at the electric field of 10 V/${\mu}m$.

Effect of PbO on the Field Emission Characteristics of Carbon Nanotube Paste

  • Kim, Jun-Seop;Goak, Jeung-Choon;Lee, Han-Sung;Jeon, Ji-Hyun;Kim, Jin-Hee;Lee, Yeon-Ju;Hong, Jin-Pyo;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1225-1228
    • /
    • 2006
  • In the CNT paste for field emission, PbO frit had a fatal influence on CNTs by accelerating a decomposition of CNTs during firing. In the thermogravimetric analysis on the mixtures of CNTs and other ingredients, it was evident that CNTs began to burn out at ${\sim}350^{\circ}C$ by reacting with PbO. This problem was overcome by replacing the PbO frit by the Pb-free frit such that most of CNTs could survive during firing. Consequently, the emission current of the CNT paste prepared using the lead-free frit was improved as much as 250 %, compared to the PbO-containing one. The CNT paste was further optimized by adding a dispersant, whose dispersibility was assessed by measuring the resistance of the paste. With 10% dispersant added, the emission properties of the paste was greatly enhanced as 50 times higher as those of the paste without a dispersant.

  • PDF

CO2 Respiration Characteristics with Physicochemical Properties of Soils at the Coastal Ecosystem in Suncheon Bay (순천만 연안 생태계에서 토양의 이화학적 성질에 의한 이산화탄소 호흡 특성)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Pil-Geun
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.217-227
    • /
    • 2010
  • This paper was studied $CO_2$ respiration rate with physicochemical properties of soils at wetland, paddy field and forest in Nongju-ri, Haeryong-myeon, Suncheon city, Jeollanam-do. Soil temperature and $CO_2$ respiration rate were measured at the field, and soil pH, moisture and soil organic carbon were analyzed in laboratory. Field monitoring was conducted at 6 points (W3, W7, W13, W17, W23, W27) for wetland, 3 points (P1, P2, P3) for paddy field and 3 points (F1, F2, F3) for forest in 10 January 2009. $CO_2$ concentrations in chamber were measured 352~382 ppm for wetland, 364~382 ppm for paddy field and 379~390 ppm for forest, and the average values were 370 ppm, 370 ppm and 385 ppm, respectively. $CO_2$ respiration rates of soils were measured $-73{\sim}44\;mg/m^2/hr$ for wetland, $-74{\sim}24\;mg/m^2/hr$ for paddy field and $-55{\sim}106\;mg/m^2/hr$ for forest, and the average values were $-8\;mg/m^2/hr$, $-25\;mg/m^2/hr$ and $38\;mg/m^2/hr$. $CO_2$ was uptake from air to soil in wetland and paddy field, but it was emission from soil to air in forest. $CO_2$ respiration rate function in uptake condition increased exponential and linear as soil temperature and soil organic carbon. But, it in emission condition decreased linear as soil temperature and soil organic carbon. $CO_2$ respiration rate function in wetland decreased linear as soil moisture, but its in paddy and forest increased linear as soil moisture. $CO_2$ respiration rate function in all sites increased linear as soil pH, and increasing rate at forest was highest.

Synthesis and Luminescent Properties of $RE^3+(Eu^3+\;and\;Tb^3+$) Ions Activated CaGd4O7 Novel Phosphors

  • Pavitra, E.;Raju, G.Seeta Rama;Ko, Yeong-Hwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.359-359
    • /
    • 2012
  • Trivalent rare-earth ($RE^{3+}=Eu^{3+}\;and\;Tb^{3+}$) ions activated $CaGd_4O_7$ phosphors were synthesized by a sol-gel process. After annealing at $1,500^{\circ}C$, the XRD patterns of the phosphor confirmed their monoclinic structure. The photoluminescence excitation spectra of $Eu^{3+}$ and $Tb^{3+}$ doped $CaGd_4O_7$ phosphor shows the broad-band excitations in the shorter wavelength region due to charge transfer band of completely filled $O^{2-}$ to the partially filled $Eu^{3+}$ ions and f-d transitions of $Tb^{3+}$ ions, respectively. The photoluminescence spectra show that the reddish-orange ions and green emission for $Eu^{3+}$ and $Tb^{3+}$ ions, respectively. Owing to the importance of thermal quenching property in the technological parameters, the temperature-dependent luminescence properties of these phosphors were measured for examing the suitability of their applications in the development of light emitting diodes (LEDs). In addition to those measurements, the cathodoluminescence properties were examined by changing the acceleration voltage and filament current. The calculated chromaticity coordinates of these phosphors were close proximity to those of commercially available phosphors for LED and field emission display devices.

  • PDF

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

Field emission properties of carbon nanotubes grown by various methods (다양한 방법에 의해 성장된 탄소 나노튜브의 전계방출 특성)

  • Kim, Bu-Jong;Chang, Han-Beet;Kim, Jong-Pil;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1408-1409
    • /
    • 2011
  • Carbon nanotubes (CNTs) were grown on conical tip substrates by using various methods such as electrophoretic deposition, dip-coating, and spray. The scanning electron microscope measurement showed that the spray method ascertained the most uniform deposition of CNTs. The CNT-emitter that was fabricated by the spray method revealed the lowest turn on voltage of electron emission and the highest emission current. In addition, the spray-produced CNT emitter showed the most stable long-term emission characteristics.

  • PDF

Effect of electrical aging on emission stability of carbon nanotube paste

  • Park, J.H.;Moon, J.S.;Jeong, J.S.;Yoo, J.B.;Park, C.Y.;Moon, H.S.;Nam, J.W.;Kim, J.M.;Park, J.H.;Choe, D.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1466-1469
    • /
    • 2005
  • We report effects of electrical aging on the emission stability of carbon nanotube (CNT) paste for low cost and high low-cost and large area field emission devices or displays. Photosensitive carbon nanotube paste was formulated by using of spin on glass (SOG) as an inorganic binder and investigated emission properties and stability depending on electrical aging condition.

  • PDF

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Vertical Growth of CNTs by Bias-assisted ICPHFCVD and their Field Emission Properties (DC Bias가 인가된 ICPHFCVD를 이용한 탄소나노튜브의 수직 배향과 전계방출 특성)

  • Kim, Kwang-Sik;Ryu, Ho-Jin;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • In this study, the vertical aligned carbon nanotubes was synthesized by DC bias-assisted Inductively Coupled Plasma Hot-Filament Chemical Vapor Deposition (ICPHFCVD). The substrate used CNTs growth was Ni(300 ${\AA}$)/Cr(200 ${\AA}$)-deposited one on glass by RF magnetron sputtering. R-F, DC bias and filament power during the growth process were 150 W, 80 W, 7∼8 A, respectively. The grown CNTs showed hollow structure and multi-wall CNTs. The top of grown CNT was found to Ni-tip that the CNT end showed to metaltip. The graphitization and field emission properties of grown was better than grown CNTs by ICPCVD. The turn-on voltage of CNT grown by DC bias-assisted ICPHFCVD showed about 3 V/${\mu}m$.

Field emission properties of CNT-W tips as a function of the composition ratio of Ni and Co catalysts in CNT growth (CNT 성장시 Ni 및 Co 촉매의 조성비에 따른 CNT-W 팁의 전계방출 특성 분석)

  • Kim, Won;Yun, Sung-Jun;Kim, Young-Kwang;Kim, Jong-Pil;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1269-1270
    • /
    • 2007
  • Carbon nanotubes (CNTs) are directly grown on W-tips at $700^{\circ}C$ using an ICP-CVD method. Sharpening of W-tip is done by electrochemical etch and their diameters are limited to range from $3{\mu}m$ to $5{\mu}m$. Catalysts for CNTs growth are formed by RF and DC co-sputtering systems using Ni and Co. The composition ratio of Ni and Co has been evaluated by energy dispersive x-ray spectroscopy (EDS). The micro-images of CNTs are monitored by field emission scanning electron microscope (FESEM). It is observed from Raman study that the intensity of the D-peak is increased by increasing the amount of Co catalyst. Furthermore, the measurement of field emission properties of CNTs show that the CNT grown on a single Co catalyst possess the greatest performance such as $V_{th}$=1,115V and $I_{max}=164{\mu}A$.

  • PDF