• Title/Summary/Keyword: field crops

Search Result 913, Processing Time 0.029 seconds

Soil Microbial Community Assessment for the Rhizosphere Soil of Herbicide Resistant Genetically Modified Chinese Cabbage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Byung-Ohg;Ryu, Tae-Hoon;Cho, Hyun-Suk;Park, Jong-Sug;Lee, Ki-Jong;Oh, Sung-Dug;Lee, Jang-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • BACKGROUND: Cultivation of genetically modified(GM) crops rapidly has increased in the global agricultural area. Among those, herbicide resistant GM crops are reported to have occupied 89.3 million hectares in 2010. However, cultivation of GM crops in the field evoked the concern of the possibility of gene transfer from transgenic plant into soil microorganisms. In our present study, we have assessed the effects of herbicide-resistant GM Chinese cabbage on the surrounding soil microbial community. METHODS AND RESULTS: The effects of a herbicide-resistant genetically modified (GM) Chinese cabbage on the soil microbial community in its field of growth were assessed using a conventional culture technique and also culture-independent molecular methods. Three replicate field plots were planted with a single GM and four non-GM Chinese cabbages (these included a non-GM counterpart). The soils around these plants were compared using colony counting, denaturing gradient gel electrophoresis and a species diversity index assessment during the growing periods. The bacterial, fungal and actinomycetes population densities of the GM Chinese cabbage soils were found to be within the range of those of the non-GM Chinese cabbage soils. The DGGE banding patterns of the GM and non-GM soils were also similar, suggesting that the bacterial community structures were stable within a given month and were unaffected by the presence of a GM plant. The similarities of the bacterial species diversity indices were consistent with this finding. CONCLUSION: These results indicate that soil microbial communities are unaffected by the cultivation of herbicide-resistant GM Chinese cabbage within the experimental time frame.

Survey of Plant Parasitic Nematodes on Economic Crops (경제작물(經濟作物) 주산단지(主産團地) 선충 발생상황(發生狀況) 조사(調査))

  • Cho, H.J.;Han, S.C.
    • Korean journal of applied entomology
    • /
    • v.25 no.3 s.68
    • /
    • pp.175-182
    • /
    • 1986
  • A study was conducted to survey the fauna and the field density ofp lant parastic nematodes on important cash crops in Korea. Studies were carried out with sampling about five hundred grams of soil around roots of eighteen different kinds of crops from fifty five locations throughout the country. Nematodes were elutriated from over three thousand soil samples, and identified into sixteen different genera. Among them Ditylenchus species were found to be the most abundant in fields of garlic and onion, Helicoty-lenchus of sesame, chinese cabbage and mulberry, Meloidogyne of red-pepper, tomato, cucumber and peanut, Pratylenchus of mulberry and peach, Pratylenchus of apple, Chinese cabbage and radish, Trichodorus of potato, and Xiphinema of peach and potato. Field density of Meloidogyne species was increased with the longer continuous cultivation of red-pepper in the same field.

  • PDF

Current status of comparative compositional analysis for GM crop biosafety assessment (유전자변형작물 안전성평가를 위한 영양성분 비교연구 동향)

  • Kim, Eun-Ha;Oh, Seon-Woo;Lee, Sang-Gu;Lee, Sung-Kon;Ryu, Tae-Hun
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.261-272
    • /
    • 2020
  • Approvals for cultivation and import of genetically modified (GM) crops have dramatically increased around the world. Comparative compositional studies are an important aspect of safety assessments of products from GM crops and are based on substantial equivalence. Compositional analyses focus on determining similarities and differences between the compositions of the GM crops and their conventional counterparts, and thereby assessing the compositional equivalence of GM crops and their conventional comparators. The analytes, such as major constituents, key nutrients, and antinutrients, are generally determined on a crop-specific basis according to the OECD consensus document. The use of standard methods throughout the processes, such as selection of comparators, field trials, analytical methods, and statistical data analysis, is crucial. In this study, we showed the general framework of compositional studies. Literature for compositional studies of GM crops conducted abroad and in Korea was reviewed to obtain information about analytes, conventional counterparts, cultivation year, location, and statistical methods. The studies conducted abroad assessed for commercial release of GM crops such as soybean, maize, and cotton, while domestic studies were mainly performed for research in rice. In addition, we suggested a guidance for conventional comparators and field trials applicable to the domestic situation.

Wind Profile in Rice Paddy Field (수도 재배 논에서 공기유동 프로파일)

  • 이중용;안은수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.221-228
    • /
    • 2001
  • Chemical application, one of the most important crop management processes happened to cause spray drift, that would threaten farmers in field as well as dwellers in rural region. Spray drift was affected by micro-meteorological parameters. A study to evaluate short distance drift characteristics of a boom sprayer in paddy fields has been undergoing. This study is the first step of the research. Main purpose of the was conducted to develop a mean wind profile and to get information on turbulence intensities above and within rice canopy. Wind in rice paddy field were measured at every 10cm from 10 to 180cm above the ground using a 2-dimensional probe and a hot wire anemometer system. Main results were summarized as follows. 1. Mean wind profile was modeled as; Equations. see full-text 2. Roughness length and zero-displacement in rice canopy were analyzed to be respectively 0.04 and 0.7∼0.72 times of the canopy height. The values are smaller comparing to those of other crops because rice canopy is flexible and uniform comparing to other crops. 3. Turbulence intensities (Tl) was greater as close to the ground and became constant at heights greater than 1.5Hc. where Tl’s were 0.4 and 0.15 in horizontal and vertical direction respectively.

  • PDF

Control of Fungal Diseases with Antagonistic Bacteria, Bacillus sp. AC-1

  • Park, Yong-Chul-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.50-61
    • /
    • 1994
  • Biological control of important fungal diseases such as Phytophthora blight of red pepper, gary mold rot of vegetables, and powdery mildew of many crops was attempted using an antagonistic bacterium, Bacillus sp. AC-1 in greenhouses and fields. The antagonistic bacterium isolated from the rhizosphere soils of healthy red pepper plant was very effective in the inhibition of mycelial growth of plant pathogenic fungi in vitro including Phytophthora capsici, Rhizoctonia solani, Pyricularia oryzae, Botrytis cinerea, Valsa mali, Fusarium oxysporum, Pythium ultimum, Alternari mali, Helminthosporium oryzae, and Colletotrichum gloeosporioides. Culture filtrate of antagonistic Bacillus sp. AC-1 applied to pot soils infested with Phytophthora capsici suppressed the disease occurrence better than metalaxyl application did until 37 days after treatment in greenhouse tests. Treatments of the bacterial suspension on red pepper plants also reduced the incidence of Phytophthora blight in greenhouse tests. In farmers' commercial production fields, however, the controlling efficacy of the antagonistic bacteria was variable depending on field locations. Gray mold rot of chinese chives and lettuce caused by Botrytis cinerea was also controlled effectively in field tests by the application of Bacillus sp. AC-1 with control values of 79.7% and 72.8%, respectively. Spraying of the bacterial suspension inhibited development of powdery mildew of many crops such as cucumber, tobacco, melon, and rose effectively in greenhouse and field tests. The control efficacy of the bacterial suspension was almost same as that of Fenarimol used as a chemical standard. Further experiments for developing a commercial product from the antagonistic bacteria and for elucidating antagonistic mechanism against plant pathogenic fungi are in progress.

  • PDF

Improved Method of Suitability Classification for Sesame (Sesamum indicum L.) Cultivation in Paddy Field Soils

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.520-529
    • /
    • 2017
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, Korean government pursuits cultivating upland crops in paddy fields to reduce overproduced rice in Korea. In order to succeed this policy, it is critical to set criteria suitability classification for upland crops cultivating in paddy field soils. The objective of this study was developing guideline of suitability classification for sesame cultivation in paddy field soils. Yields of sesame cultivated in paddy field soils and soil properties were investigated at 40 locations at nationwide scale. Soil properties such as topography, soil texture, soil moisture contents, slope, and drainage level were investigated. The guideline of suitability classification for sesame was determined by multi-regression method. As a result, sesame yields had the greatest correlation with topography, soil moisture content, and slope. Since sesame is sensitive to excessive soil moisture content, paddy fields with well drained, slope of 7-15% and mountain foot or hill were best suit for cultivating sesame. Sesame yields were greater with less soil moisture contents. Based on these results, area of best suitable paddy field land for sesame was 161,400 ha, suitable land was 62,600 ha, possible land was 331,600 ha, and low productive land was 1,075,500 ha. Compared to existing suitability classification, the new guideline of classification recommended smaller area of best or suitable areas to cultivate sesame. This result may suggest that sesame cultivation in paddy field can be very susceptible to soil moisture contents.

Characteristics of Spore Density and Colonization Pattern of Arbuscular Mycorrhizal Fungi on the No-tillage Soil under Greenhouse Condition (시설재배지 무경운 토양에서 녹비작물별 Arbuscular Mycorrhizal Fungi(AMF) 감염양상과 포자밀도 특성)

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Byeong-Ho;Sohn, Bo-Kyoon;Wee, Chi-Do;Lee, Jeong-Hyun;Jung, Woo-Jin;Park, Ro-Dong
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.343-355
    • /
    • 2011
  • This work was studied the effects of spore density and infection of arbuscular mycorrhizal fungi (AMF) for no-tillage organic cultivation of pepper with wintering green manure crops cultivation in greenhouse field. Spore density of arbuscular mycorrhizal fungi (AMF) in green manure crops was 189 spores/30g fresh soils in control including alive spore (82 spores). Spore density of AMF in all green manure crops was totally 196~226 spores/30g fresh soil and alive spore was 84~112 spores/30g fresh soil. Spore density of AMF in soils of Pepper crop was range of 48.0~56.7 spores/30g fresh soils after cultivation of green manure crops. Infection structure of AMF was not significantly difference in soils of green manure crops and Pepper crop after cultivation of green manure crops. Infection rate of AMF in roots of green crops was low level by 2.8% in giant chickweed, 7.4% in rye, 9.3% in hairy vetch. Infection rate of AMF in roots of barley was the highest level by 20.3%. Infection rate of AMF in roots of Pepper crop was range of 5.2~7.2% after cultivation of green manure crops Also, infection rate of AMF in roots of Pepper crop was 8.1% after the harvest of barley. Infection structure of AMF in barley very well consisted of network with internal hyphae, while hairy vetch and rye tended to no network. There was not a significant relationship between spore density in soils and infection rate of AMF in rhizosphere of Pepper.

Effect of Cover Crop on Weed Control in No-tilled Organic Soybean Field (콩 무경운 유기재배 시 피복식물의 잡초억제 효과)

  • Cho, Jung-Lai;An, Nan-Hee;Nam, Hong-sik;Lee, Sang-min;Ok, Jung-hun
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • This study was conducted to evaluate weed control effect in organic soybean upland field as affected by cover crops including rye, hairyvetch, and its mixture. The experiment was conducted during two years (2015 and 2016) at the NAS (National Institute of Agricultural Sciences) organic farming experimental field. The cover crops were seeded after tillage at fall crop season in 2014, and then, the soybean field was managed with no tillage system from 2015. The weed suppression rates of cover crops application for rye and mixture (rye+hairyvetch) treatment during 60 days after transplanting were 80% and 30%, respectively. However, weed suppression rate of hairyvetch treatment was not significantly different as compared to control. Weed flora in experimental field were less than general soybean field. The average organic soybean yield was generally low compare to normal year, nevertheless, the soybean yield for rye and mixture treatment in 2016 were significantly higher than PE mulching treatment.

Integrated Tree Crops-ruminants Systems in South East Asia: Advances in Productivity Enhancement and Environmental Sustainability

  • Devendra, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.587-602
    • /
    • 2011
  • Improved efficiency in the use of natural resources, pragmatic production systems and environmental sustainability, justified by the need for improved land use systems and increased productivity, are discussed in the context of Asian integrated systems, diversification, and issues of sustainability. The importance of these are reflected by serious inadequate animal protein production throughout Asia, where available supplies cannot match current and projected human requirements up to 2050. Among the ruminant production systems, integrated tree crops-ruminant production systems are grossly underestimated and merit emphasis and expansion. As an example, integrated oil palm- based system is an important pathway for integration with ruminants (buffaloes, cattle, goats and sheep), and provides the entry point for development. The importance and benefits of integrated systems are discussed, involving animals with annual and perennial tree crops, integration with aquaculture, the significance of crop-animal interactions, stratification of the systems, production options, improved use of forages and legumes, potential for enhanced productivity, implications for improved livelihoods of the rural poor and the stability of farm households. The advances in research and development in South East Asia highlight demonstrable increased productivity from animals and meat offtakes, value addition to the oil palm crop, sustainable development, and distinct economic impacts. The results from 12 out of a total of 24 case studies concerning oil palm over the past three decades showed increased yield of 0.49-3.52 mt of fresh fruit bunches (FFB)/ha/yr; increased income by about 30%; savings in weeding costs by 47- 60% equivalent to 21-62 RM/ha/yr; and an internal rate of return of 19% based on actual field data. The results provide important socio-economic benefits for resource-poor small farmers. Potential increased offtakes and additional income exist with the integration of goats. Additionally, the potential for carbon sequestration with tree crops is an advantage. The reasons for low adoption of the syatems are poor awareness of the potential of integrated systems, resistance by the crop- oriented plantation sector, and inadequate technology application. Promoting wider expansion and adoption of the systems in the future is linked directly with coherent policy, institutional commitment, increased investments, private sector involvement, and a stimulus package of incentives.

Recommendation of P and K Fertilizers for Crops Based on Soil Testing (토양분석치(土壤分析値)에 의(依)한 작물별(作物別) 인산(燐酸) 및 가리시비량(加里施肥量) 결정법(決定法))

  • Hong, Chong Woon;Kim, Yung Sup;Kim, Yung Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.29-31
    • /
    • 1973
  • Upon the assumption that the available components in the soil evaluated by present analytical procedures, are as effective as the components applied to the soil as fertilizer, some formulas for the calculation of fertilizer requirements (F. R) for crops are suggested. Basically, the formulas are derived by combining the country average values of soil test data(${\overline{ST}}$) and of the optimum rate of fertilizers (ORF) for crops obtained from N.P.K. trials in farmer's field, as following. $$F.R(kg/10a)={\overline{ST}}(kg/10a)+ORFkg/10a-ST(kg/10a)$$ where, ST denotes the available components tested in the soil under question. Although this formula can be used both for P and K fertilizers, considering the significance of the potassium saturation rate of the soil for the availability of K, for the calculation of K fertilizer requirement, following formula is suggested. $$F.R(kg/10a)=(C.E.C.{\times}B.S.R.K.-KST(me/100g){\times}CF$$ where, B. S. R. K. is the basic potassium saturation rate of the soil and CF is conversion factor for the conversion of K me/100g into $K_2O$ kg/10a. The B. S. R. K. for different crops are obtained from the country average values of soil exchangeable K (${\overline{KST}}$), cation exchange capacity (CEC) and the optimum rates of K fertilizers for crops (ORF $K_2O$). $$B.S.R.K.=\frac{{\overline{KST}}{\times}CF+ORF(K_2O)}{CEC{\times}CF}$$ Using these formulas, equations for P and K fertilizer requirements for rice, barley, wheat, corn, italian millet, soy bean, sweet potato, potato and rape are derived.

  • PDF