• Title/Summary/Keyword: field coil

Search Result 807, Processing Time 0.033 seconds

Mouse Somatosensory Cortex Stimulation Using Pulse Modulated Transcranial Magnetic Stimulation (구형파 변조된 경두개 자기자극을 이용한 쥐의 감각피질 자극실험)

  • Sun, Sukkyu;Seo, Taeyoon;Huh, Yeowool;Cho, Jeiwon;Kwon, Youngwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.482-485
    • /
    • 2016
  • In this work, a transcranial magnetic stimulation(TMS) experiment on animals is performed to stimulate the brain cortex of the mouse using modulated signals. The proposed TMS system is composed of the inverter, transformer, capacitor, variable inductor, and stimulation coil to generate 1.5 mT magnetic field in the brain cortex of the mouse. The stimulation signal is modulated to square wave where the carrier frequency is swept from 85 to 91 kHz to investigate the stimulation effect. The experimental result shows that when the carrier frequency of the stimulation signal is lower than 89 kHz, the reaction of the mouse does not change while the stimulation signal which has the carrier frequency higher than 89 kHz results in decreasing the threshold of the stimulus for the pressure.

Characteristic Analysis of Double sided Slotless Halbach Array Permanent Magnet Linear Generator with Three Phases Concentrated Winding of Cored Type by using Analytical Method (해석적 방법을 이용한 3상 집중권 권선을 갖는 양측식 슬롯리스 고정자 Halbach 배열 영구자석 선형 발전기의 특성해석)

  • Seo, Sung-Won;Choi, Jang-Young;Hong, Keyyong;Kim, Kyong-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.58-65
    • /
    • 2015
  • This paper deals with the generating characteristic analysis of permanent magnet linear generator (PMLG) with double-sided Halbach magnet array mover and three phases concentrated stator windings by using analytical method. On the basis of a magnetic vector potential and Maxwell's equations, governing equations are obtained, and magnetization modeling for Halbach magnet array is performed analytically by using the Fourier series. And then, we obtain electrical parameters such as back-EMF constant, resistance, and coil inductance based on magnetic field calculations. Finally, analytical results for generating performance are confirmed by comparing with finite element analysis results.

Fiber-Optic Current Transformer for the Over Current Protection Relay (과전류 보호계전기용 광섬유 전류센서)

  • Song, Min-Ho;Yang, Chang-Soon;Ahn, Seong-Joon;Park, Byoung-Seok;Lee, Byoung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.542-548
    • /
    • 2001
  • A robust, accurate, broad-band, alternating current sensor using fiber-optics is being developed as a part of optical over current protection relay system. The sensor uses the Faraday effect in optical fiber and polarimetric measurements tc sense electrical current. The current sensing coil consists of a length of twisted optical fiber and Faraday rotator mirror to suppress the linear birefringence effect. Due to its single-ended closed path structure, it can not only be easily installed to the target with great isolation from other fields in the vicinity, but the sensitivity can be increased by using multiple turns. This paper reports on the theoretical backgrounds of the sensor design and the preliminary experimental results.

  • PDF

Development of Open-Connect Type Eddy Current Transducers for the Detection of Surface Flaws in Continuous Pipeline (연속된 배관의 결함 검출을 위한 개폐식 와전류 탐촉자 개발)

  • Kim, Young-Joo;Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.187-192
    • /
    • 2002
  • The open-connect type eddy current transducer for the flaw detection in continuously connected pipelines was developed. This eddy current transducer is for the on-line inspection of the tubes in industries, to which commercial encircling probes are not applicable. The excitation coil that consists of a ribbon type cable and a flat connector can be opened and closed on purpose. The sensing coils of this transducer are circumferentially arrayed near the outside of the tube wall but axially displaced from the exciter by about one and half tube diameter. In application to steel tubes, and the performance of this transducer was evaluated as a little behind those of magnetic saturation type in signal to noise ratio and flaw size decision, but usable to detect or to locate large size flaws in steel tubes. Surface cracks deeper than 19% of the tube thickness could be detected with good signal to noise ratio.

Optimal Design of New Magnetorheological Mount for Diesel Engines of Ships (선박용 디젤엔진을 위한 새로운 MR 마운트의 최적설계)

  • Do, Xuan-Phu;Park, Joon-Hee;Woo, Jae-Kwan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents an optimal design of a magnetorheological(MR) fluid-based mount(MR mount) that can be used for to vibration control in diesel engines of ships. In this work, a mount that uses mixed-modes(squeeze mode, flow mode, and shear mode) is proposed and designed. To determine the actuating damping force of the MR mount required for efficient vibration control, the excitation force from a diesel engine is analyzed. In this analysis, a model of a V-type engine is considered. The relationship between the velocity and pressure of gas in terms of the torque acting on the piston is derived. Subsequently, by integrating the field-dependent rheological properties of commercially available MR fluid with the excitation force, the appropriate size of the MR mount is designed. In addition, to achieve the maximum actuating force under geometric constraints, design optimization is undertaken using the ANSYS parametric design language software. Through magnetic density analysis, optimal design parameters such as the bottom gap and radius of coil are determined.

Long-baseline single-layer 2nd-order $high-T_c$ SQUID gradiometer (긴기저선을 가진 단일층 고온초전도 SQUID 2차미분기)

  • Lee Soon-Gul;Kang Chan Seok;Kim In-Seon;Kim Sang-Jae
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.6-10
    • /
    • 2005
  • We have studied feasibility of single-layer second-order $high-T_c$ SQUID gradiometers in magnetocardiography. We have measured human cardiomagnetic signals using a short-baseline (5.8 mm) single-layer second-order YBCO gradiometer in partially shielded environments. The gradiometer has an overall size of $17.6\;mm{\times}6\;mm$ and contains three parallel-connected pickup coils which are directly coupled to a step-edge junction SQUID. The gradiometer showed an unshielded gradient noise of $0.84\;pT/cm^2/Hz^{1/2}$ at 1 Hz, which corresponds to an equivalent field noise of $280\;fT/Hz^{1/2}$. The balancing factor was $10^3$. Based on the same design rules as the short-baseline devices, we have studied fabrication of 30 mm-long baseline gradiometers. The devices had an overall size of $70.2\;mm{\times}10.6\;mm$ with each pickup coil of $10\;mm{\times}10\;mm$ in outer size. As Josephson elements we made two types of submicron bridges, which are variable thickness bridge (VTB) and constant thickness bridge (CTB), from $3\;{\mu}m-wide$ and 300 nm-thick YBCO lines with a thin layer of Au on top by using a focused ion beam (FIB) patterning method. VTB was 300 nm wide, 200 nm thick, 30 nm long with Au removed and CTB 100 nm wide and 30 nm long. In temperature-dependent critical currents, $I_c(T)$, VTB showed an nonmetallic barrier-type behavior and CTB an SNS behavior. We believe that those characteristics are ascribed to naturally formed grain boundaries crossing the bridges.

  • PDF

Analysis and reduction of thermal magnetic noise in liquid-He dewar for sensitive low-field nuclear magnetic resonance measurements

  • Hwang, S.M.;Yu, K.K.;Lee, Y.H.;Kang, C.S.;Kim, K.;Lee, S.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.20-23
    • /
    • 2013
  • For sensitive measurements of micro-Tesla nuclear magnetic resonance (${\mu}T$-NMR) signal, a low-noise superconducting quantum interference device (SQUID) system is needed. We have fabricated a liquid He dewar for an SQUID having a large diameter for the pickup coil. The initial test of the SQUID system showed much higher low-frequency magnetic noise caused by the thermal magnetic noise of the aluminum plates used for the vapor-cooled thermal shield material. The frequency dependence of the noise spectrum showed that the noise increases with the decrease of frequency. This behavior could be explained from a two-layer model; one generating the thermal noise and the other one shielding the thermal noise by eddy-current shielding. And the eddy-current shielding effect is strongly dependent on the frequency through the skin-depth. To minimize the loop size for the fluctuating thermal noise current, we changed the thermal shield material into insulated thin Cu mesh. The magnetic noise of the SQUID system became flat down to 0.1 Hz with a white noise of 0.3 $fT/{\surd}Hz$, including the other noise contributions such as SQUID electronics and magnetically shielded room, etc, which is acceptable for low-noise ${\mu}T$-NMR experiments.

Analysis of Signal Transfer Characteristics of Implantable Middle Ear System using Acoustic Model (청각모델을 이용한 이식형 인공중이 시스템의 신호 전달 특성 해석)

  • 송병섭;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.227-233
    • /
    • 2002
  • The IME(implantable middle ear) system is Promising due to its ability to free from sound feedback and Produce a good sound quality and intelligibility with low distortion even if it is operated with high gain for severe hearing impaired. The differential electromagnetic vibration transducer. which was developed for using in IME system and has two small magnets attached the same Pole facing in the coil. is not influenced by environmental external magnetic field. Besides, it has high vibration efficiency and good frequency response characteristics. In this Paper, using acoustic model of the transducer and ear model of normal Person. the signal transfer characteristics of the IME system are analyzed and investigated From the differences of the characteristics between normal ear and the IME system, it is Possible that design of the IME system that have the signal transfer characteristics similar to normal person's ear.

Design of a 40 channel SQUID system (40채널 SQUID 시스템의 설계)

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Lim, C.M.;Lee, S.K.;Park, Y.K.;Park, J.C.;Lee, D.H.;Shin, J.K.;Ahn, C.B.;Park, M.S.;Hur, Y.;Hong, J.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.191-192
    • /
    • 1998
  • We report on the design of a low-noise 40 channel SQUID system for biomagnetism. We used low-noise SQUID sensor with the pickup coil integrated on the same wafer as the SQUID. The SQUID electronics were simplified by increasing the voltage output of the SQUID. The SQUID insert was designed to have low thermal load, minimizing the liquid helium loss. The digital signal processing provides versatile analysis tools and the software is based on the object-oriented programming. For the effective localization of the source location, solutions of the inverse problems based on the lead-field and the simulated anneal ins were studied.

  • PDF

Ground-based Observations of the Polar Region Space Environment at the Jang Bogo Station, Antarctica

  • Kwon, Hyuck-Jin;Lee, Changsup;Jee, Geonhwa;Ham, Young-Bae;Kim, Jeong-Han;Kim, Yong Ha;Kim, Khan-Hyuk;Wu, Qian;Bullett, Terence;Oh, Suyeon;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2018
  • Jang Bogo Station (JBS), the second Korean Antarctic research station, was established in Terra Nova Bay, Antarctica ($74.62^{\circ}S$ $164.22^{\circ}E$) in February 2014 in order to expand the Korea Polar Research Institute (KOPRI) research capabilities. One of the main research areas at JBS is space environmental research. The goal of the research is to better understand the general characteristics of the polar region ionosphere and thermosphere and their responses to solar wind and the magnetosphere. Ground-based observations at JBS for upper atmospheric wind and temperature measurements using the Fabry-Perot Interferometer (FPI) began in March 2014. Ionospheric radar (VIPIR) measurements have been collected since 2015 to monitor the state of the polar ionosphere for electron density height profiles, horizontal density gradients, and ion drifts. To investigate the magnetosphere and geomagnetic field variations, a search-coil magnetometer and vector magnetometer were installed in 2017 and 2018, respectively. Since JBS is positioned in an ideal location for auroral observations, we installed an auroral all-sky imager with a color sensor in January 2018 to study substorms as well as auroras. In addition to these observations, we are also operating a proton auroral imager, airglow imager, global positioning system total electron content (GPS TEC)/scintillation monitor, and neutron monitor in collaboration with other institutes. In this article, we briefly introduce the observational activities performed at JBS and the preliminary results of these observations.