• Title/Summary/Keyword: field coil

Search Result 805, Processing Time 0.033 seconds

A Study on the Measurement System Design for Measuring Properties of AC Magnetic Field Sensor (교류 자기센서 특성 시험장치 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2015
  • This paper describes design and construction results of the measurement system developed on the purpose of measuring properties of AC magnetic field sensors used in the weapon system. The system for measuring the properties of AC magnetic field sensors consist of 3-axis helmholtz coil, signal generator, signal amplifier, sensor data acquisition unit and AC magnetic field sensor property measurement & analysis equipment including the operating software. By using this system, we can measure various properties of AC magnetic field sensor such as sensitivity, linearity and dynamic response in the frequency from 1 Hz to 10 kHz. Finally we also verified its performance by measuring the property of a MAG 639, standard magnetic field sensor of bartington instruments, with the developed measurement system.

Comparative Study of Coupling Factors for Assessment of Low-Frequency Magnetic Field Exposure

  • Shim, Jae-Hoon;Choi, Min-Soo;Jung, Kyu-Jin;Kwon, Jong-Hwa;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.516-523
    • /
    • 2016
  • In this paper, coupling factors are calculated based on numerical analysis in order to assess various non-uniform low-frequency magnetic field exposure situations. Two types of non-uniform magnetic field sources are considered; circular coil and parallel wires with balanced currents. For each magnetic field source, source current values are determined so that reference magnetic field magnitude can be measured at the specified point on the human model. Various exposure situations are investigated by changing parameters such as the distance between source and human model, radius of circular coil, and the gap between parallel wires. For equivalent human models, prolate spheroid model and simplified human model from IEC 62311 standard are used. The calculated coupling factor values are compared with those obtained by 2D uniform disk human model, and the dependence of coupling factor on the choice of equivalent human model is analyzed.

Modeling of GMR Isolator for Data Transmission Utilizing Spin Valves (스핀밸브를 이용한 데이터 전송용 GMR 아이솔레이터의 모델링)

  • Park, S.;Kim, J.;Jo, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • GMR isolator was modeled using a Wheatstone bridge which is profitable for transmitting rectangular wave digital data, and the output voltage characteristics in relation to the input current were investigated in time domain. GMR isolator modeling was divided into two parts, namely magnetic and electric parts. The flow chart of the modeling was drawn in which measured MR curve of the spin valves were incorporated to obtain the electrical voltage output. For magnetic modeling, 3-dimensional model of planar coil was analyzed by FEM method to obtain the magnetic field strength corresponding to the input current. For electric modeling, resistance, inductance and capacitance of the planar coil were calculated and magnetic field waveform was obtained corresponding to the coil current waveform in time domain. Finally, MR-H curves of spin valves and the magnetic field waveform at the spin valves were composited to obtain the output voltage waveform of the isolator. Even though the amplitude of the coil current waveform was increased by 100%, decreased by 90%, or delayed by 10% of the period compared with the input current, similar transmitted output voltage waveform to the input current waveform was obtained due to hysteretic characteristics of the spin valves at the transmission speed of over 400 Mbit/s.

Design of the Large Diameter Faraday Rotator for High-power Laser Systems (고출력 레이저 시스템을 위한 대구경 Faraday Rotator 제작)

  • Hong, Sung-Ki;Seo, Young-Seok;Ko, Kwang-Hoon;Kim, Young-Won;Wee, Sang-Bong;Lim, Chang-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1026-1031
    • /
    • 2008
  • We report on the design and experimental results of a large diameter faraday rotator for the high-power laser system(KLF: Kaeri laser facility) that was completed in late 2007s at Korea Atomic Energy Research Institute. The design involves modelling the magnetic field of cylindrical coil with large diameter(110 mm). Magnetic field generation coil is designed by 6 layers using a rectangular wire with cross-sectional area $3{\times}5[mm^2]$. We obtain an isolation ratio for optical feedback of 35 dB at 1064 nm and magnetic field strengths ${\sim}25kG$. We expect that the design can be widely used optical isolators in high-power laser system.

Optimal Design of Field-Excitation Flux-Switching Synchronous Machine for ISG Application (계자권선형 12슬롯-10극 자속 역전식 동기 전동기의 최적 설계)

  • Koo, Bon-Kil;Jung, Il-Su;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.23-24
    • /
    • 2013
  • In recent years, ISG (Integrated Starter and Generator) system receives a great attention for electric electrification of normal gasoline vehicle. As a cost-effect machine design, an ISG without a permanent magnet is considered. A 12slot-10pole field-excitation flux-switching synchronous machine (FEFSSM) is designed and analyzed via JMAG. The active parts such as the field excitation coil and armature coil are located on the stator. The rotor part consisting of single piece iron makes it more robust and suitable to apply for high speed motor drive system application coupled with reduction belt. The design target is the motor with a maximum torque of 40Nm, a maximum power of 10kW and a maximum speed of 14000 rpm. In this paper, design optimization method is proposed for high torque capability.

  • PDF

Characteristics calculation on radio frequency power transfer in a planar inductively coupled plasma source (평면형 유도결합 플라즈마 장치에서의 RF 전력 전달 특성 계산)

  • 이정순;정태훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.368-375
    • /
    • 1999
  • The Maxwell equation and the transformer equivalent-circuit model are applied to a radio frequency planar inductively coupled plasma. The spatial distribution of the vector potential, the magnetic field, and the electric field are obtained analytically. As a result, the plasma current, the mutual inductance between the coil and the plasma, and the self inductance of plasma are found to increase with increasing skin depth. The spatial distribution of absorbed power has maximum where the antenna coil exists, and has a similar profile to that of the induced electric field. The power transfer efficiency is found to increase with increasing gas pressure before a saturation around p+ 20mTorr, while it shows an increase with the plasma density before a slight decrease around a density of $5\times10^{11}/\textrm{cm}^3$.

  • PDF

Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg (전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해)

  • Lim, Keon-Gyu;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2203-2204
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effet.. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results. using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg (전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해)

  • Lim, Keon-Gyu;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.571-572
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effet.. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results, using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

Electromagnetic design of 10 MW class superconducting wind turbine using 2G HTS wire

  • Kim, J.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2013
  • This paper introduces design processes of 10 MW class superconducting generator for wind Turbine. Superconducting generator can produce 5 times stronger magnetic field than permanent magnet at least, which enables large scale wind turbine to function as a lighter, smaller and more highly efficient system. These processes are targeted for higher efficiency and shorter high temperature superconductor (HTS) wires to fabricate 10 MW class superconducting generator. Three different approaches will be described in these design processes. First design process focuses on the number of rotor poles. Secondly, 270 and 360 A operating current of superconducting field coil can be adapted as a design parameter in this process. Lastly, 3 and 6 kV line to line voltage of stator coil will be used to design 10 MW class superconducting generator.

Study on the characteristics of magnetic field distribution in AC superconducting generator using normalized data

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.216-220
    • /
    • 2000
  • AC Superconducting Generators (ACSG) are featured by 3D magnetic flux distribution, which decreases in the direction of axis. For this reason, when ACSG is optimal designed, 3D magnetic field analysis is required. This paper proposes 2D Finite Element Analysis (FEA) results normalized by 3D FEA according to the position of armature coil and the ratio of field coil width to axial length in order to reduce the analysis time. By using the proposed data, the reasonable 3D FEA results of ACSG can be only predicted by 2D FEA results. The validity of the 3D FEA results is verified by comparison with the experimental results of 30kVA superconducting synchronous generator.

  • PDF