• Title/Summary/Keyword: field acceleration method

Search Result 206, Processing Time 0.026 seconds

A Reliable Study on the Accident Reconstruction using Accident Data Recorder (사고기록장치를 이용한 교통사고재현에 관한 신뢰성 연구)

  • Baek, Se-Ryong;Cho, Joeng-Kwon;Park, Jong-Jin;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.179-187
    • /
    • 2014
  • As an Accident data recorder (ADR) is a system to record a vehicle's status and dynamics information on the before and after of accident, Traffic accident investigation agencies and parts developers have a lot of interest to analyze an accident objectively and develop automotive safety devices by using real accident data, This study is to analyze an accident objectively and scientifically on the basis of traffic accident reconstruction with the use of output data of an event data recorder. This study is conducted double lane change test six times and slalom test one time as a field driving test and simulation. Based on the vehicle speed, the longitudinal and transverse acceleration, steering angle, driving path, and other kinds of information obtained from the field driving test, this study performed a simulation with PC-Crash program of reenacting and analyzing a traffic accident. The simulation was performed twice in the acceleration-steering angle input method and in the acceleration-driving path input method. By comparing the result of the field driving test with the results of the two simulations, we drew an analysis method with the optimal path reconstruction.

A Study on the Characteristics of PCN-PZT Piezoelectric Acceleration Sensor (PCN-PZT 압전형 가속도센서의 특성에 관한 연구)

  • Kim, Yeong-Deok;Kim, Gwang-Il;Jeong, U-Cheol;Go, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.354-360
    • /
    • 1999
  • PCN-PZT piezoelectric acceleration sensors of annular shear mode voltage type were fabricated and their characteristics have been investigated. Field tests are also carried out. To avoid noise problems from the environmental conditions, acceleration sensors employed solid state micro-electronics for pre-amplifier. The calibration procedures based on the principle of the comparison method were adopted for investigating the characteristics of fabricated acceleration sensors. The voltage sensitivity and resonant frequency of fabricated acceleration sensors were 83mv/g, 23kHz, respectively. The lower and upper frequency limit were 4Hz and 9kHz, respectively. The variation of the voltage sensitivity showed 10% at $-406{\circ}C\; and\; 9%\; at\; 121^{\circ}C$ compared to that of reference temperature at $40^{\circ}C$.

  • PDF

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li;Wen-Yu He;Wei-Xin Ren;Gang Liu;Hai-Peng Sun
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.297-308
    • /
    • 2023
  • Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.

Dynamic Performance Enhancement of the Railway Plate Girder Bridge using the In-site Continuous Method (현장 연속화 기법을 통한 철도판형교의 동적성능향상)

  • Oh, Ji-Taek;Kim, Hyun-Min
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.774-782
    • /
    • 2011
  • In-site Continuous Method to improve the dynamic performance of railway plater girder bridge was developed. In this study, the In-site Continuous Method in the existing railway plate girder bridge was applied. Comparison of the results obtained from the field experiment were presented. The reductions in vertical acceleration were shown to approximately 24.8%, 45.4% and 27.5% in case of the freight train, passenger train and express tilting train, respectively. The reductions of lateral acceleration were shown to approx. 31%, 39% and 15% in the previous case. In the vertical displacement, the reductions were shown to approx. 20%, 13% and 12.6%, respectively. Through this method, we expect the problem of the restriction in speed up of train to be solve.

  • PDF

Attitude Estimation of Unmanned Vehicles Using Unscented Kalman Filter (무향 칼만 필터를 이용한 무인 운송체의 자세 추정)

  • Song, Gyeong-Sub;Ko, Nak-Yong;Choi, Hyun-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.265-274
    • /
    • 2019
  • The paper describes an application of unscented Kalman filter(UKF) for attitude estimation of an unmanned vehicle(UV), which is equipped with a low-cost attitude heading reference system (AHRS). The roll, pitch and yaw required at the correction stage of the UKF are calculated from the measurements of acceleration and geomagnetic field. The roll and pitch are attributed to the measurement of acceleration, while yaw is calculated from the geomagnetic field measurement. Since the measurement of geomagnetic field is vulnerable to distortion by hard-iron and soft-iron effects, the calculated yaw has more uncertainty than the calculated roll and pitch. To reduce the uncertainty of geomagnetic field measurement, the proposed method estimates bias in the geomagnetic field measurement and compensates for the bias for more accurate calculation of yaw. The proposed method is verified through navigation experiments of a UV in a test pool. The results show that the proposed method yields more accurate attitude estimation; thus, it results more accurate location estimation.

Post-earthquake warning for Vrancea seismic source based on code spectral acceleration exceedance

  • Balan, Stefan F.;Tiganescu, Alexandru;Apostol, Bogdan F.;Danet, Anton
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.365-372
    • /
    • 2019
  • Post-earthquake crisis management is a key capability for a country to be able to recover after a major seismic event. Instrumental seismic data transmitted and processed in a very short time can contribute to better management of the emergency and can give insights on the earthquake's impact on a specific area. Romania is a country with a high seismic hazard, mostly due to the Vrancea intermediate-depth earthquakes. The elastic acceleration response spectrum of a seismic motion provides important information on the level of maximum acceleration the buildings were subjected to. Based on new data analysis and knowledge advancements, the acceleration elastic response spectrum for horizontal ground components recommended by the Romanian seismic codes has been evolving over the last six decades. This study aims to propose a framework for post-earthquake warning based on code spectrum exceedances. A comprehensive background analysis was undertaken using strong motion data from previous earthquakes corroborated with observational damage, to prove the method's applicability. Moreover, a case-study for two densely populated Romanian cities (Focsani and Bucharest) is presented, using data from a $5.5M_W$ earthquake (October 28, 2018) and considering the evolution of the three generations of code-based spectral levels for the two cities. Data recorded in free-field and in buildings were analyzed and has confirmed that no structural damage occurred within the two cities. For future strong seismic events, this tool can provide useful information on the effect of the earthquake on structures in the most exposed areas.

KINEMATIC CLASSIFICATION OF CORONAL MASS EJECTIONS IN LASCO C3 FIELD OF VIEW

  • Jeon, Seong-Gyeong;Moon, Yong-Jae;Cho, Il-Hyun;Lee, Harim;Yi, Kangwoo
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.3
    • /
    • pp.67-74
    • /
    • 2022
  • In this study, we perform a statistical investigation of the kinematic classification of 4,264 coronal mass ejections (CMEs) from 1996 to 2015 observed by SOHO/LASCO C3. Using the constant acceleration model, we classify these CMEs into three groups: deceleration, constant velocity, and acceleration motion. For this, we devise three different classification methods using fractional speed variation, height contribution, and visual inspection. The main results of this study can be summarized as follows. First, the fractions of three groups depend on the method used. Second, about half of the events belong to the groups of acceleration and deceleration. Third, the fractions of three motion groups as a function of CME speed are consistent with one another. Fourth, the fraction of acceleration motion decreases as CME speed increases, while the fractions of other motions increase with speed. In addition, the acceleration motions are dominant in low speed CMEs whereas the constant velocity motions are dominant in high speed CMEs.

Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test (동적원심모형 시험을 이용한 부지응답해석 검증시 입력 지진의 결정)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.

ESTIMATE OF CORONAL MAGNETIC FIELD STRENGTH USING PLASMOID ACCELERATION MEASUREMENT

  • Jang, Min-Hwan;Choe, G.S.;Lee, K.S.;Moon, Y.J.;Kim, Kap-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.6
    • /
    • pp.175-184
    • /
    • 2009
  • A method of estimating the lower bound of coronal magnetic field strength in the neighborhood of an ejecting plasmoid is presented. Based on the assumption that the plasma ejecta is within a magnetic island, an analytical expression for the force acting on the ejecta is derived. The method is applied to a limb coronal mass ejection event, and a lower bound of the magnetic field strength just below the CME core is estimated. The method is expected to provide useful information on the strength of reconnecting magnetic field if applied to X-ray plasma ejecta.

Detection and Damping Recognition of Normal Frequency Using Fast Fourier Transform in the Vibration Acceleration Analysis System (진동가속도 분석시스템에서 고속푸리에변환을 이용한 기준진동수의 검출 및 감쇠인식)

  • Kim, Hwang Jun
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.16-20
    • /
    • 2019
  • Fast Fourier Transform in the vibration acceleration analysis system has recently been utilized in the field of sensor measurement. In this paper, we propose a Fast Fourier Transform based method of detecting the normal frequency among the many frequency types of diffuse field. This normal frequency is expressed by the formula of frequency damping recognition which is calculated in a similar way to the octave center frequency. Based on this theory, this paper can more accurately inform noise producers of the degree of damping, which is different from the vibration type of diffuse field.