• 제목/요약/키워드: fictitious beam

검색결과 17건 처리시간 0.018초

부착할열파괴에 대한 콘크리트의 횡구속에 관한 연구 (A Study on the Confinement of Concrete from Splitting Bond Failure)

  • 최완철;정일영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.74-79
    • /
    • 1992
  • The confinement of concrete from splitting bond failure is studied with the experiments and finite element models. The cracks in the test beam-end specimens containing various covers show a typical splitting failure with a dominant fracture surface. The finite element model includes representation of the splitting cracking using Hillerborg's fictitious crack model. The increase in bond strength from addition of covers are consistant for both test bars and numerical models. The numerical solution agrees well with results and also with the test results and also with the empirical equations. The splitting crack in the numerical models generally matches the crack surface observed in the laboratory. The confinement of concrete from splitting is one of the governing factors in the ultimate bond force.

  • PDF

Computer aided reinforcement design of RC structures

  • An, Xuehui;Maekawa, Koichi
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.15-30
    • /
    • 2004
  • In this study, a design process for reinforced concrete structures using the nonlinear FEM analysis is developed. Instead of using the nonlinear analysis to evaluate the required performance after design process, the nonlinear analysis is applied before designing the reinforcement arrangement inside the RC structures. An automatic reinforcement generator for computer aided reinforcement agreement is developed for this purpose. Based on a nonlinear FEM program for analyzing the reinforced concrete structure, a smart fictitious material model of steel, is proposed which can self-adjust the reinforcement to the required amount at the cracking location according to the load increment. Using this tool, the reinforcement ratio required at design load level can be decided automatically. In this paper, an example of RC beam with opening is used to verify the proposed process. Finally, a trial design process for a real size underground RC LNG tank is introduced.

플랫플레이트 구조물의 효율적인 해석을 위한 수퍼요소의 활용 (Use of Super Elements for Efficient Analysis of Flat Plate Structures)

  • 김현수;이승재;이동근
    • 한국전산구조공학회논문집
    • /
    • 제16권4호
    • /
    • pp.439-450
    • /
    • 2003
  • 근래에 들어서 경제적 및 계획적인 요구에 의하여 충고를 줄일 수 있는 이점을 가진 플랫플레이트 구조물이 많이 건설되고 있다. 구조기술자들은 실무에서 플랫플레이트 구조물을 해석하기 위하여 일반적으로 유효보폭모델을 사용한다. 그러나 유효보폭 모델을 적용하기가 어려운 경우에는 유한요소법을 사용할 필요가 있으며, 이때 바닥판의 정확한 거동을 예측하기 위해서는 세분한 유한요소 모델을 사용하는 것이 필요하다. 전체 구조물을 수많은 유한요소로 세분하여 모형화하면 막대한 해석시간과 컴퓨터 메모리가 필요하게 된다. 따라서 본 연구에서는 상당히 정확한 해석결과를 쉽게 얻을 수 있는 효율적인 해석기법을 제안한다. 제안된 해석기법은 행렬응축기법을 통하여 생성된 수퍼요소를 사용하며 수퍼요소 경계부분의 변형적합조건을 만족시키기 위하여 수퍼요소를 개발할 때 가상보를 도입한다. 본 연구에서는 슬래브의 탄성계수를 감소시킴으로서 유효보폭모델에서 사용되고 있는 강성저감을 고려하였다. 수많은 요소론 사용한 유한요소모델 및 유효보폭모델을 사용하여 여러 가지의 예제구조물에 대하여 정적해석과 동적해석을 수행하고 본 연구에서 제안된 해석방법에 의한 결과와 비교함으로써 제안된 방법의 효율성과 정확성을 검증하였다.

Prediction of chloride diffusion coefficient of concrete under flexural cyclic load

  • Tran, Van Mien;Stitmannaithum, Boonchai;Nawa, Toyoharu
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.343-355
    • /
    • 2011
  • This paper presented the model to predict the chloride diffusion coefficient in tension zone of plain concrete under flexural cyclic load. The fictitious crack based analytical model was used together with the stress degradation law in cracked zone to predict crack growth of plain concrete beams under flexural cyclic load. Then, under cyclic load, the chloride diffusion, in the steady state and one dimensional regime, through the tension zone of the plain concrete beam, in which microcracks were formed by a large number of cycles, was simulated with assumptions of continuously straight crack and uniform-size crack. The numerical analysis in terms of the chloride diffusion coefficient, $D_{tot}$, normalized $D_{tot}$, crack width and crack length was issued as a function of the load cycle, N, and load level, SR. The nonlinear model as regarding with the chloride diffusion coefficient in tension zone and the load level was proposed. According to this model, the chloride diffusion increases with increasing load level. The predictions using model fit well with experimental data when we adopted suitable crack density and tortuosity parameter.

개구부가 있는 벽식구조물의 3차원해석을 위한 슈퍼요소와 부분구조의 이용 (Use of Super Elements and Substructures for Three Dimensional Analysis of the Box System with Openings)

  • 이동근;김현수;남궁계홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 2001
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take tremendous amount of computational time and memory if the entire building structure is subdivided into a finer mesh . An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study, The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

다양한 형태의 개구부를 가진 전단벽식 구조물의 효율적 인 동적 해석 (Efficient dynamic analysis of shear wall building structures with various types of openings)

  • 김현수;이승재;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.329-336
    • /
    • 2003
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were peformed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • 유영민
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.