• 제목/요약/키워드: fibroblast growth factor-7

검색결과 66건 처리시간 0.023초

혈관내피성장인자의 섬유아세포 증식과 Notch 1 발현에 대한 영향 (Vascular Endothelial Growth Factor Effect on Notch 1 Expression and Proliferation of Fibroblast)

  • 고성훈
    • Archives of Plastic Surgery
    • /
    • 제37권1호
    • /
    • pp.7-11
    • /
    • 2010
  • Purpose: Vascular endothelial growth factor (VEGF) is known as a growth factor of endothelium and fibroblast. The purpose is to know the VEGF effects on fibroblast proliferation and fibroblast's notch receptor expression. Methods: CCD-986sk fibroblast was purchased from the Korean Cell Bank and was used in XTT assay for proliferation and wound healing assay for migration. Immunofluorescent (IF) staining and western blotting were used in testing notch expression of fibroblast. Semiquantitative RT-PCR was used in checking notch 1 mRNA production by fibroblast. Student-t test was used for analyzing results. Results: Cell proliferation assay using XTT showed significant higher proliferation in VEGF treated fibroblast, $2.324{\pm}0.0026$ vs. $2.463{\pm}0.017$ (p=0.002). Wound healing assay showed longer migration in VEGF treated fibroblast (p=0.062). The fluorescence was brighter in VEGF treated cells of notch 1 IF staining. Notch 1 expressions and mRNA productions increased more in VEGF treated cells. Conclusion: VEGF stimulates fibroblast to proliferate, migrate and to express Notch 1 simultaneously. Notch receptor could be related to VEGF mediated wound healing.

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • 대한의생명과학회지
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

The Comparison of Commercial Serum-Free Media for Hanwoo Satellite Cell Proliferation and the Role of Fibroblast Growth Factor 2

  • In-sun Yu;Jungseok Choi;Mina K. Kim;Min Jung Kim
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1017-1030
    • /
    • 2023
  • Fetal bovine serum (FBS), which contains various nutrients, comprises 20% of the growth medium for cell-cultivated meat. However, ethical, cost, and scientific issues, necesitates identification of alternatives. In this study, we investigated commercially manufactured serum-free media capable of culturing Hanwoo satellite cells (HWSCs) to identify constituent proliferation enhancing factors. Six different serum-free media were selected, and the HWSC proliferation rates in these serum-free media were compared with that of control medium supplemented with 20% FBS. Among the six media, cell proliferation rates were higher only in StemFlexTM Medium (SF) and Mesenchymal Stem Cell Growth Medium DXF (MS) than in the control medium. SF and MS contain high fibroblast growth factor 2 (FGF2) concentrations, and we found upregulated FGF2 protein expression in cells cultured in SF or MS. Activation of the fibroblast growth factor receptor 1 (FGFR1)-mediated signaling pathway and stimulation of muscle satellite cell proliferation-related factors were confirmed by the presence of related biomarkers (FGFR1, FRS2, Raf1, ERK, p38, Pax7, and MyoD) as indicated by quantitative polymerase chain reaction, western blotting, and immunocytochemistry. Moreover, PD173074, an FGFR1 inhibitor suppressed cell proliferation in SF and MS and downregulated related biomarkers (FGFR1, FRS2, Raf1, and ERK). The promotion of cell proliferation in SF and MS was therefore attributed to FGF2, which indicates that FGFR1 activation in muscle satellite cells may be a target for improving the efficiency of cell-cultivated meat production.

Association Study of Fibroblast Growth Factor 2 and Fibroblast Growth Factor Receptors Gene Polymorphism in Korean Ossification of the Posterior Longitudinal Ligament Patients

  • Jun, Jae-Kyun;Kim, Sung-Min
    • Journal of Korean Neurosurgical Society
    • /
    • 제52권1호
    • /
    • pp.7-13
    • /
    • 2012
  • Objective : The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) of fibroblast growth factor (FGF) 2 gene and fibroblast growth factor receptor (FGFR) genes are associated with ossification of the posterior longitudinal ligament (OPLL). Methods : A total of 157 patients with OPLL and 222 controls were recruited for a case control association study investigating the relationship between SNPs of FGF2, FGFR1, FGFR2 and OPLL. To identify the association among polymorphisms of FGF2 gene, FGFR1, FGFR2 genes and OPLL, the authors genotyped 9 SNPs of the genes (FGF2 : rs1476217, rs308395, rs308397, and rs3747676; FGFR1 : rs13317 and rs2467531; FGFR2 : rs755793, rs1047100, and rs3135831) using direct sequencing method. SNPs data were analyzed using the SNPStats, SNPAnalyzer, Haploview, and Helixtree programs. Results : Of the SNPs, a SNP (rs13317) in FGFR1 was significantly associated with the susceptibility of OPLL in the codominant (odds ratio=1.35, 95% confidence interval=1.01-1.81, p=0.048) and recessive model (odds ratio=2.00, 95% confidence interval=1.11-3.59, p=0.020). The analysis adjusted for associated condition showed that the SNP of rs1476217 (p=0.03), rs3747676 (p=0.01) polymorphisms in the FGF2 were associated with diffuse idiopathic skeletal hyperostosis (DISH) and rs1476217 (p=0.01) in the FGF2 was associated with ossification of the ligament flavum (OLF). Conclusion : The results of the present study revealed that an FGFR1 SNP was significantly associated with OPLL and that a SNP in FGF2 was associated with conditions that were comorbid with OPLL (DISH and OLF).

A case of Pfeiffer syndrome with c833_834GC>TG (Cys278Leu) mutation in the $FGFR2$ gene

  • Lee, Min-Young;Jeon, Ga-Won;Jung, Ji-Mi;Sin, Jong-Beom
    • Clinical and Experimental Pediatrics
    • /
    • 제53권7호
    • /
    • pp.774-777
    • /
    • 2010
  • Pfeiffer syndrome is a rare autosomal dominant disorder characterized by coronal craniosynostosis, brachycephaly, mid-facial hypoplasia, and broad and deviated thumbs and great toes. Pfeiffer syndrome occurs in approximately 1:100,000 live births. Clinical manifestations and molecular genetic testing are important to confirm the diagnosis. Mutations of the fibroblast growth factor receptor 1 ($FGFR1$) gene or $FGFR2$ gene can cause Pfeiffer syndrome. Here, we describe a case of Pfeiffer syndrome with a novel c833_834GC>TG mutation (encoding Cys278Leu) in the $FGFR2$ gene associated with a coccygeal anomaly, which is rare in Pfeiffer syndrome.

해조류 추출물이 섬유아세포의 증식에 미치는 영향 (Cell proliferation effect of brown marine algae extracts on Mouse Fibroblast)

  • 고주영;이지혁;김현수;김형호;전유진
    • 한국해양바이오학회지
    • /
    • 제7권1호
    • /
    • pp.28-34
    • /
    • 2015
  • We examined cell regeneration efficiency of brown marine algae living in Jeju coast for search of a novel therapeutic device with cutaneous wound healing materials. The five algae were collected and compared with epidermal growth factor (EGF) as a positive control in the assays of cell proliferation and cell migration of NIH3T3 fibroblast cells. Among the 80% methanol extracts of these brown algae, the two algal extracts from Ishige foliacea and Colpomenia bullosa showed the proliferative effects of the cells similar to the effect of EGF. Besides it was found that Colpomenia bullosa extract significantly enhanced cell migration of NIH3T3 cell. In the study, therefore, we confirmed that the Colpomenia bullosa extract improved proliferation of NIH3T3 cell and a potential candidate for cultaneous wound healing.

Human Gingival Fibroblasts의 분화와 증식에서 CGFs의 생물학적 효과 (The Biological Effects of Concentrated Growth Factors on the Differentiation and Proliferation of Human Gingival Fibroblasts)

  • 박성일;배현숙;홍기석
    • 치위생과학회지
    • /
    • 제12권6호
    • /
    • pp.689-695
    • /
    • 2012
  • The aim of this study was to elucidate the effects of concentrated growth factors (CGFs) on human gingival fibroblasts in vitro. Blood was collected from three male volunteers (average age 27 years). CGFs were prepared using standard protocols. The CGF exudates were collected at the following culture time points: 1, 7, 14, and 21 days. The levels of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor ${\beta}1$ (TGF-${\beta}1$) in CGFs were quantified. The CGF exudates were then used to culture human gingival fibroblasts. The biologic characteristics of these fibroblasts were analyzed in vitro for 21 days. Platelet-rich plasma released the highest amounts of TGF-${\beta}1$ and PDGF-BB on the first day. The level of TGF-${\beta}1$ had decreased slightly by day 7, although the difference compared to levels at day 1 was not statistically significant. However, by days 14 and 21, levels of TGF-${\beta}1$ had dropped significantly compared to day 1 levels. The levels of PDGF-BB at days 7, 14, and 21 did not differ significantly from that measured on day 1. CGFs maintained the release of autologous growth factors for a reasonable period of time (7 days for TGF-${\beta}1$ and 21 days for PDGF-BB). Gingival fibroblasts treated with CGF exudates collected at day 14 reached peak viability and synthesized type I collagen. Furthermore, the CGF exudates exerted positive effects on the proliferation and differentiation of these cells at days 1, 7, 14, and 21. The findings of this study suggest that treatment with CGFs represents a promising method of enhancing mucosal healing following surgical procedures.

골수기질세포 및 섬유아세포의 창상치유 촉진 성장인자 분비능 비교 (Comparison of Bone Marrow Stromal Cells with Fibroblasts in Wound Healing Accelerating Growth Factor Secretion)

  • 김세현;한승규;윤태환;김우경
    • Archives of Plastic Surgery
    • /
    • 제33권1호
    • /
    • pp.1-4
    • /
    • 2006
  • Cryopreserved fibroblast implants represent a major advancement for healing of chronic wounds. Bone marrow stromal cells, which include the mesenchymal stem cells, have a low immunity-assisted rejection and are capable of expanding profoundly in a culture media. Therefore, they have several advantages over fibroblasts in clinical use. The ultimate goal of this study was to compare the wound healing accelerating growth factor secretion of the bone marrow stromal cells with that of the fibroblasts and this pilot study particularly focuses on the growth factor secretion to accelerate wound healing. Bone marrow stromal cells and fibroblasts were isolated from the same patients and grown in culture. At 1, 3, and 5 days post-incubating, secretion of basic fibroblast growth factor(bFGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta(TGF-${\beta}$) were compared. In TGF-${\beta}$ secretion fibroblasts showed 12~21% superior results than bone marrow stromal cells. In contrast, bFGF levels in the bone marrow stromal cells were 47~89% greater than that in fibroblasts. The VEGF levels of the bone marrow stromal cells was 7~12 fold greater than that of the fibroblasts. Our results suggest that the bone marrow stromal cells have great potential for wound healing accelerating growth factor secretion.

Accelerated Wound Healing by ]Recombinant Human Basic Fibroblast Growth Factor in Healing-impaired Animal Models

  • Kang, Soo-Hyung;Oh, Tae-Young;Cho, Hyun;Ahn, Byoung-Ok;Kim,Won-Bae
    • Biomolecules & Therapeutics
    • /
    • 제7권1호
    • /
    • pp.7-13
    • /
    • 1999
  • The stimulatory effect of recombinant human basic fibroblast growth factor (bFGF) on wound healing was evaluated in healing-impaired animal models. Full-thickness wounds were made in prednisolone-treated mice, streptozotocin (STZ)-induced diabetic rats and mitomycin C (MMC)-treated rats. Saline or bFGF at a dose of 1, 5, or $25\mu\textrm{g}$ per wound was applied to the open wound once a day for three to five days. The degree of wound healing was assessed using wound size and histological parameters such as degree of epidermal and dermal regeneration. Local application of bFGF accelerated wound closure significantly in a dose-dependent manner in all healing-impaired wounds (p<0.05). The wound healing effect of bFGF was further confirmed by histological examination in MMC-treated rats. Epidermal and dermal regeneration were enhanced in bFGF-treated wounds with a dose-related response. Dermal regeneration parameters such as collagen matrix formation and angiogenesis were significantly increased in $5\mu\textrm{g}$, or $\25mu\textrm{g}$ of bFGF-treated wounds when compared to saline-treated wounds (p<0.05). pectin immunostaining on day 8 for vascular endothelium showed an increased number of neovessels in bFGF-treated wounds. These results suggest that topical application of bFGF has beneficial effects on wound healing by angiogenesis and granulation tissue formation in healing-impaired wounds.

  • PDF

Enhancing Dermal Matrix Regeneration and Biomechanical Properties of $2^{nd}$ Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing

  • Cho Lee Ae-Ri
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1311-1316
    • /
    • 2005
  • To better define the relationship between dermal regeneration and wound contraction and scar formation, the effects of epidermal growth factor (EGF) loaded in collagen sponge matrix on the fibroblast cell proliferation rate and the dermal mechanical strength were investigated. Collagen sponges with acid-soluble fraction of pig skin were prepared and incorporated with EGF at 0, 4, and 8 $\mu$g/1.7 $cm^{2}$. Dermal fibroblasts were cultured to 80$\%$ confluence using DMEM, treated with the samples submerged, and the cell viability was estimated using MTT assay. A deep, $2^{nd}$ degree- burn of diameter 1 cm was prepared on the rabbit ear and the tested dressings were applied twice during the 15-day, post burn period. The processes of re-epithelialization and dermal regeneration were investigated until the complete wound closure day and histological analysis was performed with H-E staining. EGF increased the fibroblast cell proliferation rate. The histology showed well developed, weave-like collagen bundles and fibroblasts in EGF-treated wounds while open wounds showed irregular collagen bundles and impaired fibroblast growth. The breaking strength (944.1 $\pm$ 35.6 vs. 411.5 $\pm$ 57.0 Fmax, $gmm^{-2}$) and skin resilience (11.3 $\pm$ 1.4 vs. 6.5 $\pm$ 0.6 mJ/$mm^{2}$) were significantly increased with EGF­treated wounds as compared with open wounds, suggesting that EGF enhanced the dermal matrix formation and improved the wound mechanical strength. In conclusion, EGF-improved dermal matrix formation is related with a lower wound contraction rate. The impaired dermal regeneration observed in the open wounds could contribute to the formation of wound contraction and scar tissue development. An extraneous supply of EGF in the collagen dressing on deep, $2^{nd}$ degree-burns enhanced the dermal matrix formation.