• 제목/요약/키워드: fibroblast L-929

검색결과 46건 처리시간 0.024초

생쥐 배양섬유 모세포주 L929에 미치는 중금속(Cd, Ni, Zn)류의 세포독성에 관한 연구 (A Study on the Cytotoxic Effect of Heavy metals (Cd, Ni, Zn) on Cultured Mouse Fibroblast L929 Cell line)

  • 이종빈;나명석;황영진;위성욱;최진희;김선희;유춘만;김재민
    • 한국환경보건학회지
    • /
    • 제23권2호
    • /
    • pp.98-105
    • /
    • 1997
  • The study on the cytotoxicity of heavy metals was carried out to evaluate the cytotoxic effect of those on mouse L929 fibroblast cell in 96-well microtiter plates. The cytotoxicity was assayed by the neutral red, tetrazolium MTT, total protein, micronuclei test. The cytotoxicity of the heavy metals by neutral red and tetrazolium MTT was showed in order, cadmium > zinc > nickel for the cationic metals tested. The effect of metal-metal interaction on the cytotoxicity showed a marked reduction of cadmium toxicity by zinc, to a lesser degree, by nickel. The amount of total protein in treated group added heavy metals was less than that of the control and treated cadmium alone was less than those of combination with nickel or zinc. At midpoint cytotoxicity values of heavy metals, the frequency of micronuclei on the cell treated heavy metals was more than that of control and treated cadmium alone was more than those of combination with nickel or zinc. From those results, it could be suggested that the heavy metals decreased the viability of mouse fibroblast L929 cells in a concentration-dependent manner and have cytogenic toxic effects, but mixed group decreased the cytotoxic and cytogenic toxicity on L929 cells.

  • PDF

부착성 동물세포의 대량배양을 위한 젤라틴 미립담체의 개발 (Development of Solid-Gelatin Microcarrier for Large Scale Production of Anchorage-Dependent Animal Gell Lines)

  • 박정극
    • KSBB Journal
    • /
    • 제4권1호
    • /
    • pp.18-20
    • /
    • 1989
  • 첼라틴을 이용하여 직경이 $100~400{\mu}{\textrm}{m}$의 분포를 가잔 구행 미 겁 담체를 만들어 부착성 동물세포들의 부착및 성 장정도를 측정하였다. 또 상업화된 Cytodex Ill와 실험실에서 제조된 Polyacrylamide 미립담체들을 가지고 세포 성장 정도를 비교검토하였다. DMEM 애지에서 L929 (mouse fibroblast)와 BHK 21(Baby Hamster Kidney)부착성 세포를 배양한 결과 L 929는 P AA, Cytodex ill에서 가장 좋은 성장을 보였다. 109/L의 Cytodex 농도에서 최대세포농도는 약 $4\times10^6$cells/ML 이였다.

  • PDF

흰쥐의 섬유아세포 L-929를 이용한 새로운 Soft Contact Lens 소재의 생물안전성 검증 (Biosafety of the New Soft Contact Lens Materials in the Fibroblast L-929 Cell Line)

  • 유영현;남주형;김병길;김순복;문익재;김종필;서영배
    • 한국미생물·생명공학회지
    • /
    • 제37권1호
    • /
    • pp.75-79
    • /
    • 2009
  • In this study, we polymerized new materials for soft contact lens using HEMA (2-hydroxyethyl methacrylate) which is the based-monomer of soft contact lens, EGDMA (ethylene glycol dimethacrylate) as cross linkage agent, and the new additives of monoester or di-ester derived from itaconic acid commercially produced by the fermentation of Asp. itaconicus. New polymer materials for soft contact lens were synthesized with the mixture of HEMA and mono- or diester at different ratios and presented to a good water content and oxygen transmissibility (Dk/L) values. In case of polymerization with HEMA and mono-ester (15%), the water content and oxygen transmissibility of contact lens were found to be good values at 57.6% and 28.5 Dk respectively. The mixture of HEMA and mono-ester is more excellent than HEMA/di-ester in the water content and oxygen transmissibility. The toxicity of new contact lens materials were confirmed in the fibroblast L-929 cell line using a agar overlay test and a growth inhibition test with the extract solution of contact lens.

Study on the Elastic Characteristics of Living Cells using Atomic Force Microscope Indentation Technique

  • Kwon Eun-Young;Kim Young-Tae;Kim Dae-Eun
    • KSTLE International Journal
    • /
    • 제7권1호
    • /
    • pp.10-13
    • /
    • 2006
  • In this work, imaging and study of elastic property of the living cell was performed. The motivation of this work was to seek the possibility of exploiting Young's modulus as a disease indicator using Atomic Force Microscope (AFM) and also to gain fundamental understanding of cell mechanics for applications in medical nanorobots of the future. L-929 fibroblast adherent cell was used as the sample. Imaging condition in cell culturing media environment was done in very low speed ($20{\mu}m/ s$) compared to that in the ambient environment. For measuring the Young's modulus of the living cell, AFM indentation method was used. From the force-distance curve obtained from the indentation experiment the Young's modulus could be derived using the Hertz model. The Young's modulus of living L-929 fibroblast cell was $1.29{\pm}0.2$ kPa.

UVB 자외선 차단제의 항균력 및 피부자극에 관한 연구 (A Study on the Antimicrobial Activity and in vitro Cytotoxicity of UVB Sunscreen Chemicals in Cosmetic Products)

  • 최종완;허윤석;손근욱
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 1992년도 자외선 차단 화장품의 SPF에 관한 심포지움(대한화장품학회)
    • /
    • pp.46-68
    • /
    • 1992
  • To investigate the effect on the antimicrobial activity against S.aureus ATCC 6538, E.coli KCTC 1039 and cell toxic level against transformed mouse fibroblast L929 in formula added with various concentrations of UVB blockers commonly used in cosmetic products, these experiments were carried out by preservative efficacy testing methods and in vitro cytotoxicity methods. The results obtained were as follow ; 1) Octyl Dimethyl PABA had a broad antibacterial spectrum against the Gram (+) and the Gram(-) bacteria at 5.84 % concentration, but not Octyl Methoxycinnamate. 2) Antibacterial activity was decreased in a combined UVB blocker system of squalane base. Especially, Octyl Dimethyl PABA was inactivated by Octyl Methoxycinnamate at 5.84% concentration to a large extents , but not 4-Methylbenzylidene Camphor. 3) Within in vitro cytotoxicity by use of mouse fibroblast L929 on UV-B blockers, NR assay was more excellent than MTT assay on quantitative

  • PDF

Cytotoxicity Evaluation of Elastomeric Impression Materials Using Different Fibroblasts Cell Lines

  • Kwon, Jae-Sung;Kim, Kyoung-Nam
    • Journal of Korean Dental Science
    • /
    • 제7권2호
    • /
    • pp.80-86
    • /
    • 2014
  • Purpose: Current common method of cytotoxicity evaluation for elastomeric impression materials use animal based cell lines, which the clinical relevance has been often questioned. Hence, the purpose of this study was to examine the difference in results with both human based and animal based fibroblast cell line. Materials and Methods: Three types of fibroblast cells were used in this study; conventional mouse fibroblasts of L929, human gingival fibroblasts (HGF-1), and immortalized human oral fibrobalsts (hTERT-hNOF). Test on extract and test by direct contact using different commercially available elastomeric impression materials were carried out according to the international standards. Result: There was significant difference in cell viability between types of fibroblasts cell used, where HGF-1 showed highest cell viability and L929 the lowest. Conclusion: Within the limitation of this study, careful consideration must be given when selecting the cells and interpreting the results for cytotoxicity evaluation of elastomeric impression materials, where use of human based cell lines such as hTERT-hNOF would be appropriate for both ease of cytotoxicity test and clinical relevance.

Cytocompatibility of silkworm cocoon layer extracts

  • Jo, You-Young;Kim, Sung-Kuk;Lee, Kwang-Gill;Bae, Sung Min;Kim, Jong-Ho;Shin, Bong-Seob;Jeon, Jong-Young;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제33권2호
    • /
    • pp.96-102
    • /
    • 2016
  • Recently silk polymer produced by Bombyx mori silkworm has been considered as biological macromolecules. Silk polymer was extracted in PBS solution at $37^{\circ}C$ for 72 h or $72^{\circ}C$ for 24 h. The effect of EtOH treatment on the cocoon extraction was also examined. The extraction yield of cocoon was less than 1 wt% regardless of extraction conditions. UV spectroscopy showed that the experimental extracts have absorption bands at 280 nm. There is no cytotoxicity effect on the mouse fibroblast L929 cell. The phenotype of L929 cell was not changed under the experimental conditions. The proliferation behavior of L929 cell was not affected by the addition of cocoon extract. Therefore, cocoon extract might be cytocompatible and can be used as promising biomaterials.

$CaO-MgO-Al_{2}O_{3}-SiO_{2}-P_{2}O_{5}$계 Bioglass-Ceramic의 결정화 조건에 따른 기계적 성질 및 생체적합성에 관한 연구 (MECHANICAL PROPERTIES AND BIOCOMPATIBILITY WITH CRYSTALLIZATION CONDITIONS OF $CaO-MgO-Al_{2}O_{3}-SiO_{2}-P_{2}O_{5}$ BIOGLASS-CERAMIC SYSTEM)

  • 최현미;이민호;배태성;박찬운
    • 대한치과보철학회지
    • /
    • 제34권1호
    • /
    • pp.169-186
    • /
    • 1996
  • The purpose of this study was to investigate the mechanical properities and biocompatibility with crystallization temperature and time of a bioactive glass-ceramic system $41.4wt%SiO_{2}-35.0wt%CaO-3.0wt%MgO-12.0wt%P_{2}O_{5}-8.6wt%Al_{2}O_{3}$ with same molar percent of $Al_{2}O_{3}\;and\;P_{2}O_{5}$. The crystallization behaviors were investigated with DTA, XRD and SEM. Fracture toughness with the change of crystallization temperature and time was measured by indentation fracture method. Also, biocompatibility was evaluated by culture of mouse fibroblast cell line L929. The results obtained were as follows ; 1. The major crystalline phases were apatite and anorthite, and relative intensity of anorthite phase was increased at $1004^{\circ}C$. 2. The hardness and fracture toughness were gradually increased with the increase in ceraming temperature to $1004^{\circ}C$. 3. When the glass ceramic was heat-treated for 4 hours at ceraming temperature of $1004^{\circ}C$, hardness and fracture toughness showed the maximum values $578.84k/mm^2\;and\;2.07MPa\;m^{1/2}$, respectively. 4. The growth rate and cytotoxic of L929 fibroblast cells for bioactive glass ceramic were better than those of stainless steel and titanium.

  • PDF

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.