• Title/Summary/Keyword: fibrinolytic enzyme

Search Result 183, Processing Time 0.03 seconds

Purification and Characterization of a Thrombolytic Enzyme Produced by a New Strain of Bacillus subtilis

  • Frias, Jorge;Toubarro, Duarte;Fraga, Alexandra;Botelho, Claudia;Teixeira, Jose;Pedrosa, Jorge;Simoes, Nelson
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.327-337
    • /
    • 2021
  • Fibrinolytic enzymes with a direct mechanism of action and safer properties are currently requested for thrombolytic therapy. This paper reports on a new enzyme capable of degrading blood clots directly without impairing blood coagulation. This enzyme is also non-cytotoxic and constitutes an alternative to other thrombolytic enzymes known to cause undesired side effects. Twenty-four Bacillus isolates were screened for production of fibrinolytic enzymes using a fibrin agar plate. Based on produced activity, isolate S127e was selected and identified as B. subtilis using the 16S rDNA gene sequence. This strain is of biotechnological interest for producing high fibrinolytic yield and consequently has potential in the industrial field. The purified fibrinolytic enzyme has a molecular mass of 27.3 kDa, a predicted pI of 6.6, and a maximal affinity for Ala-Ala-Pro-Phe. This enzyme was almost completely inhibited by chymostatin with optimal activity at 48℃ and pH 7. Specific subtilisin features were found in the gene sequence, indicating that this enzyme belongs to the BPN group of the S8 subtilisin family and was assigned as AprE127. This subtilisin increased thromboplastin time by 3.7% (37.6 to 39 s) and prothrombin time by 3.2% (12.6 to 13 s), both within normal ranges. In a whole blood euglobulin assay, this enzyme did not impair coagulation but reduced lysis time significantly. Moreover, in an in vitro assay, AprE127 completely dissolved a thrombus of about 1 cc within 50 min and, in vivo, reduced a thrombus prompted in a rat tail by 11.4% in 24 h compared to non-treated animals.

Study of Functional Chungkukjang contain Fibrinolytic Enzyme (혈전용해효소함유 기능성 청국장제조에 관한 연구)

  • 류충호;김익조;김형갑;정종화;정영기
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.357-362
    • /
    • 2002
  • A bacterial strain showing the fibrinolytic activity was screened from korean traditional soybean products. For the identification, the strain was investigated morphology and biochemical characteristics and it was classified to Bacillus subtilis. The strain had high fibrinolytic activity in Chungkukjang. The optimum fermentation condition of temperature and time were 37$^{\circ}C$ and 24hour. The pH in Chungkukjang was gradually alkalized during fermentation. The fibrinolytic enzyme in Chungkukjang stable at heft treatment; After heating at 6$0^{\circ}C$ and 8$0^{\circ}C$ for 30 min, the fibrinolytic activity remained 75% and 40%, respectively.

Isolation from Gloydius blomhoffii siniticus Venom of a Fibrin(ogen)olytic Enzyme Consisting of Two Heterogenous Polypeptides

  • Choi, Suk-Ho;Lee, Seung-Bae
    • Journal of Pharmacopuncture
    • /
    • v.16 no.2
    • /
    • pp.46-54
    • /
    • 2013
  • Objective: This study was undertaken to isolate a fibrin(ogen)olytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate the enzymatic characteristics and hemorrhagic activity of the isolated enzyme as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were determined by using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrin(ogen)olytic enzyme with the molecular weight of 27 kDa (FE-27kDa) isolated from G. b. siniticus venom consisted of two heterogenous disulfide bond-linked polypeptides with the molecular weights of 15 kDa and 18 kDa. When more than $20{\mu}g$ of FE-27kDa was applied on the fibrin plate, fibrinolysis zone was formed as indicating its fibrinolytic activity. The fibrinolytic activity was inhibited completely by phenylmethanesulfonylfluoride (PMSF) and ethylenediaminetetraacetic acid (EDTA) and partially by thiothreitol and cysteine. Metal ions such as $Hg^{2+}$ and $Fe^{2+}$ inhibited the fibrinolytic activity completely, but $Mn^{2+}$ did not. FE-27kDa preferentially hydrolyzed ${\alpha}$-chain of fibrinogen and slowly hydrolyzed ${\beta}$-chain, but did not hydrolyze ${\gamma}$-chain. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into polypeptides with molecular weights of more than 45 kDa. A dosage of more than $10{\mu}g$ of FE-27kDa per mouse was required to induce hemorrhage beneath the skin. Conclusion: FE-27kDa was a serine proteinase consisting of two heterogeneous polypeptides, hydrolyzed fibrin, fibrinogen, and gelatin, and caused hemorrhage beneath the skin of mouse. This study suggests that the potential of FE-27kDa as pharmacopuncture agent should be limited due to low fibrinolytic activity and a possible side effect of hemorrhage.

Production of Carrot Pomace Fortified with Mucilage, Fibrinolytic Enzyme and Probiotics by Solid-state Fermentation Using the Mixed Culture of Bacillus subtilis and Leuconostoc mesenteroides

  • Jung, Hye-Won;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.335-342
    • /
    • 2009
  • Bioactive compounds were produced from carrot pomace by solid-state fermentation using Bacillus subtilis HA and Leuconostoc mesenteroides. The carrot pomace (CP) fermented by B. subtilis HA with 3% monosodium glutamate (MSG) showed higher production of various bioactive compounds, with 1.64 Pa·sn of consistency, 2.31% of mucilage content, 16.95 unit/g of fibrinolytic enzyme activity, 35.3 unit/g of proteolytic activity and 37.5 mg% of tyrosine content. The mucilage production was greatly dependent upon the concentration of MSG added. Most MSG added in CP was converted into mucilage (2.3%) including 0.83% poly-$gamma$-glutamic acid (PGA) with 1,505 kDa of molecular weight. The CP fermented secondly by Leuc. mesenteroides showed acidic pH and lower consistency. However, the fibrinolytic and proteolytic activities were increased. The secondly fermented CP showed the viable cell counts with $2.5{\time}108$ CFU/g of B. subtilis HA and $3.7{\time}109$ CFU/g of Leuc. mesenteroides, respectively. The freeze-dried fermented CP showed 2.88 Pa·sn of consistency, 24% of mucilage content and 104.9 unit/g of fibrinolytic enzyme activity, respectively. Also, the powder of fermented CP indicated viable cell counts of $8.0{\time}107$ CFU/g of B. subtilis and $4.0{\time}108$ CFU/g of Leuc. mesenteroides. Therefore, the fermented CP that was fortified with dietary fibers, fibrinolytic enzyme and probiotics could be utilized as valuable ingredients of functional foods in food or cosmetic industries.

Variation of fibrinolytic enzyme activity produced Bacillus subtilis by gene cloning (유전자 cloning에 의한 Bacillus subtilis의 fibrinolytic enzyme 활성 변화)

  • 이홍석;유천권;이철수;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.14-20
    • /
    • 2000
  • The transformation of Bacillus subtilis K-54 and J-10 was carried out with constructed vectors containing structure and enhancer genes of aprN and prtR, to increase their fibrinolytic enzyme activity. Bands for the aprN and prtR genes were identified from B. subtilis J-10 by PCR that was carried out with the constructed primers for the genes. In addition, the gene fragments contained promoter site based on the results of analysing their nucleotide sequence. The two gene fragments, aprN and prtR, obtained by the PCR, were, then, inserted to vector such as T-vector and E.coli/Bacillus shuttle vector. The constructed vector were designated as pAPR2 (aprN), pENC2 (prtR) and pFLA1 (aprN and prtR), respectively. The constructed vector was used for transformation of the strains of B.subtilis J-10 and B. subtilis K-54 and the fribrinolytic activity of the transformed strains was investigated. The introduction of the vector, pAPR2 and the fibrinolytic activity of the transformed strains was investigated. The introduction of the vector, pAPR2 and pFLA1, resulted in the increase of fibrinolyitic enzyme activity in B. subtilis J-10 by 27.3% and 16%, respectively. However, the introduction of pENC2 to B. subtilis J-10 did not seem to induce increase of the enzyme activity. The strain of B.subtilis K-54 transformed with pENC2 showed an increased fibrinolytic activity by 5 folds compared with that of the original strain of B. subtilis K-54.

  • PDF

A Fibrinolytic Enzyme from Bacillus amyloliquefaciens D4-7 Isolated from Chungkook-Jang; It′s Characterization and Influence of Additives on Thermostability. (청국장으로부터 분리한 Bacillus amyloliquefaciens D4-7이 분비하는 혈전용해효소의 특성 및 열안정성에 미치는 첨가물의 효과)

  • 김상숙;이주훈;안용선;김정환;강대경
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.271-276
    • /
    • 2003
  • Bacillus amyloliquefaciens D4, which produces a strongly fibrinolytic enzyme, was isolated from Chungkook-Jang, a traditional Korean soybean-fermented food. B. amyloliquefaciens D4 was mutated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG) to yield a series of mutants with increasing levels of fibrinolytic enzyme production. After mutation, a mutant D4-7 was obtained with fibrinolytic activity about eight times stronger than the parent strain. The fibrinolytic activity of B. amyloliquefaciens D4-7, reached a maximum, when the producer was cultivated in 2% Isolated Soy Protein (ISP) broth for 48 h at $37^{\circ}C$. Compared to commercial fibrinolytic enzymes, the cell-free culture supernatant of B. amyloliquefaciens D4-7 showed stronger activity than plasmin and streptokinase. The optimum temperature and pH were $50^{\circ}C$ and 10.0 and thermostability was increased by the addition of glycerol, glucose, and NaCl.

Effects of Environmental and Nutritional Conditions on Fibrinolytic enzyme Production from Bacillus subtilis BK-17 in Flask Culture (플라스크 배양에서 Bacillus subtilis BK-17의 혈전용해효소 생산에 대한 환경 및 영양 조건의 영향)

  • 최원아;이진욱;이경희;박성훈
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.491-496
    • /
    • 1998
  • The production of fibrinolytic enzyme from Bacillus subtilis BK-17 was studied in the shake flask cultures. The important medium components studied include nitrogen source, carbon source and inorganic salts. The environmental conditions include initial pH, temperature, shaking speed and working volume. Among various N-sources, C-sources and inorganic salts tested, soybean flour, D-glucose and Na2HPO4 gave the best results, and their optimal concentrations were 1.5%, 0.5% and 0.05%, respectively. The optimal pH and temperature were 9.0 and 37$^{\circ}C$. With decreasing working volume in the range of 25∼100ml in the 250ml flask or increasing shaking speed in the range of 100∼300rpm, the enzyme production was greatly enhanced. The enzyme activity under the optimal conditions was about 1400I.U./ml with urokinase as a standard.

  • PDF

Purification and Characterization of a Novel Fibrinolytic Enzyme from Culture Supernatant of Pleurotus ostreatus

  • Liu, Xiao-Lan;Zheng, Xi-Qun;Qian, Peng-Zhi;Kopparapu, Narasimha-Kumar;Deng, Yong-Ping;Nonaka, Masanori;Harada, Naoki
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.245-253
    • /
    • 2014
  • A fibrinolytic enzyme was produced by an edible mushroom of Pleurotus ostreatus using submerged culture fermentation. The enzyme was purified from the culture supernatant by applying a combination of freeze-thaw treatment, ammonium sulfate precipitation, hydrophobic interaction, and gel filtration chromatographies. The enzyme was purified by a 147-fold, with a yield of 7.54%. The molecular masses of the enzyme an determined by gel filtration and SDS-PAGE were 13.6 and 18.2 kDa, respectively. The isoelectric point of the enzyme was 8.52. It hydrolyzed fibrinogen by cleaving the ${\alpha}$ and ${\beta}$ chains of fibrinogen followed by the ${\gamma}$ chains, and also activated plasminogen into plasmin. The enzyme was optimally active at $45^{\circ}C$ and pH 7.4. The enzyme activity was completely inhibited by EDTA, whereas protease inhibitors of TPCK, SBTI, PMSF, aprotinin and pepstatin showed no inhibition on its activity. The partial amino acid sequences of the enzyme as determined by Q-TOF2 were ATFVGCSATR, GGTLIHESSHFTR, and YTTWFGTFVTSR. These sequences showed a high degree of homology with those of metallo-endopeptidases from P. ostreatus and Armillaria mellea. The purified enzyme can also be applied as a natural agent for oral fibrinolytic therapy or prevention of thrombosis.

Purification and Characterization of a Fibrinolytic Enzyme form Bacillus sp. KDO-13 Isolated from Soybean Paste

  • Lee, Si-Kyung;Bae, Dong-Ho;Kwon, Tae-Jong;Lee, Soo-Bok;Lee, Hyung-Hoan;Park, Jong-Hyun;Heo, Seok;Johnson, Michael-G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.845-852
    • /
    • 2001
  • A microorganism producing fibrinolytic enzyme was isolated from Korean traditional soybean paste and identified as Bacillus sp. KDO-13. The fibrinolytic enzyme was purified to homogeneity by ammonium sulfate fractionation, ion-exchange chromatography on DEAE-celluose, and gel chromatography on Sephadex G-100 of the culture supernatant of Bacillus sp. KDO-13. The molecular weight of the purified enzyme was estimated to be 44,000 by SDS-PAGE. The optimum pH and temperature for the enzyme activity were pH 8.0 and $50{\circ}C$, respectively. The enzyme activity was relatively stable at pH 7.0-9.0 and temperature below $50{\circ}C$. the activity of the enzyme was inhibited by $AI^{3+}$ and $Hg^{2+}$, but activated by $Co^{2+}$\;and\;Ni^{2+}. In addition, the enzyme activity was potently inhibited by EDTA and 0-phenanthroline. The purified enzyme could completely hydrolyze a fibrin substrate within 6 h in vitro, and had a low $K_m$ value for fibrin hydrolysis. It was concluded that the purified enzyme was a metalloprotease with relatively high specificity for fibrinolysis, and thus, could be applied as an effective thrombolytic agent.

  • PDF

Isolation of Bacteria with Protease Activity from Cheonggukjang and Purification of Fibrinolytic Enzyme (청국장으로부터 혈전용해 활성이 우수한 균주 분리 및 혈전용해효소정제)

  • Choi, Yeon Hee;Lee, Jun Seung;Bae, So Young;Yang, Keun Jae;Yeom, Kyu Won;Jo, Dong Hyeok;Kang, Ock Hwa;Baik, Hyung Suk
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.259-266
    • /
    • 2013
  • To isolate the fibrinolytic enzyme, 268 strains from 21 samples were morphologically isolated from Cheonggukjang collected from Korea and Japan. Among the 268 strains, protease-producing bacteria were isolated in nutrient agar medium including 1% skimmed milk. As a result of this, 22 strains were isolated. Apiweb site was used to identify these strains based on their biochemical properties. In addition, 16S rRNA sequencing was performed to identify the strain. Most of the identified strains were Bacillus subtilis and B. amyloliquefaciens. Fibrinolytic enzyme activity was measured with the fibrin plate method. Five strains were finally selected: A2-14, A2-20, C1-05, C1-09, and F2-01. Of those five strains, the A2-20 strain, which is close to B. amyloliquefaciens, showed the strongest fibrinolytic activity. The fibrinolytic enzyme produced by the A2-20 strain was partially purified from culture supernatant by gel filtration and ion exchange chromatography. The optimal pH and temperature values of the partially purified enzyme were 7.0 and $35^{\circ}C$, respectively. Purified protein analysis was carried out with SDS-PAGE and zymography. A genetic analysis was also conducted by PCR based on the consensus sequence of fibrinolytic enzyme. Corresponding genes with a partial sequence of the A2-20 strain were identified.