• 제목/요약/키워드: fibre post

검색결과 36건 처리시간 0.019초

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.

Flexural evaluation of Textile Reinforced Concrete Panel (TRC) with mesh pre-stretching effect

  • Rose Dayaana Amran;Irvin Liow Jun Ann;Geok Wen Leong;Chee Ghuan Tan;Kim Hung Mo;Kok Seng Lim;Fadzli Mohamed Nazri
    • Advances in concrete construction
    • /
    • 제17권3호
    • /
    • pp.127-133
    • /
    • 2024
  • Textile reinforced concrete (TRC) has gained attention as a viable alternative to conventional reinforced concrete due to its improved mechanical properties and design adaptability. Despite significant research into the mechanical properties of TRC, studies regarding the flexural effect of pre-stretching with different numbers of textile reinforcements are currently limited. Therefore, this research focuses on assessing the flexural characteristics of TRC panels with the incorporation of mesh pre-stretching. Additionally, the study compares the flexural behaviour between alkali-resistant (AR) glass fibre TRC and carbon fibre TRC. A three-point bending test was conducted to assess the flexural behaviour of TRC, investigating the impact of the number of textile layers and the application of pre-stretching on flexural strength and post-cracking stiffness. The findings, exhibited by the flexural stress vs. displacement curve, indicate that applying pre-stretching to carbon fibre TRC effectively increases the flexural strength of carbon textiles and enhances post-cracking stiffness. Moreover, the greater the number of carbon textiles, the higher the flexural stress of the specimens, provided the textiles are placed in the tensile zone. Nevertheless, when comparing carbon fibre TRC with AR glass fibre TRC, it is found that the increase in flexural strength is more significant for carbon fibre TRC. Overall, applying pre-stretching to carbon fibre significantly improves the TRC's flexural performance, specifically during the post-cracking stage and in crack distribution. Furthermore, due to the higher elastic modulus and tensile strength of carbon fibre, TRC reinforced with carbon textiles shows greater flexural strength and ductility compared to AR glass fibre TRC.

Effect of the muscle nanostructure changes during post-mortem aging on tenderness of different beef breeds

  • Soji, Zimkhitha
    • Animal Bioscience
    • /
    • 제34권11호
    • /
    • pp.1849-1858
    • /
    • 2021
  • Objective: Tenderness is a very complex feature, and the process of its formation is very complicated and not fully understood. Its diversification is one of the most important problems of beef production, as a result beef aging is widely used to improve tenderness as it is believed to provide a homogeneous product to consumers. While few studies have evaluated the muscle structure properties in relation to tenderness from early post-mortem, there little to no information available on how the muscle nanostructure of beef carcasses changes during post-mortem ageing to determine the appropriate aging time for acceptable tenderness. Methods: Muscle nanostructure (myofibril diameter [MYD], myofibril spacing [MYS], muscle fibre diameter [MFD], muscle fibre spacing [MFS], and sarcomere length [SL]), meat tenderness and cooking loss [CL]) were measured on 20 A2 longissimus muscles of Bonsmara, Beefmaster, Hereford, and Simbra at 45mins, 1, 3, and 7 days post-slaughter. Muscle nanostructure was measured using a scanning electron microscope, while tenderness was measured using Warner Bratzler shear force. Results: At 45 minutes post-slaughter, breed affected MYD and MYS only, while at 24hrs it also affected MFD and MFS. On day 3 breed effected MFS and SL, while on day 7 breed effected tenderness only. As the muscles matured, both MYD and MYS decreased while CL increased, and the muscles became tender. There was no uniformity on muscle texture features (surface structure, fibre separation, muscle contraction, and relaxation) throughout the ageing period. Conclusion: Meat tenderness can be directly linked to breed related myofibril structure changes during aging in particular the MYD, spacing between myofibrils and their interaction; while the MFD, spacing between muscle fibres, SL, and CL explain the non-uniformity in beef tenderness.

Strength and mechanical behaviour of coir reinforced lime stabilized soil

  • Sujatha, Evangelin Ramani;Geetha, A.R.;Jananee, R.;Karunya, S.R.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.627-634
    • /
    • 2018
  • Soil stabilization is an essential engineering process to enhance the geotechnical properties of soils that are not suitable for construction purposes. This study focuses on using coconut coir, a natural fibre to enhance the soil properties. Lime, an activator is added to the reinforced soil to augment its shear strength and durability. An experimental investigation was conducted to demonstrate the effect of coconut coir fibers and lime on the consistency limits, compaction characteristics, unconfined compressive strength, stress-strain behaviour, subgrade strength and durability of the treated soil. The results of the study illustrate that lime stabilization and coir reinforcement improves the unconfined compressive strength, post peak failure strength, controls crack propagation and boosts the tensile strength of the soil. Coir reinforcement provides addition contact surface, improving the soil-fibre interaction and increasing the interlocking between fibre and soil and thereby improve strength. Optimum performance of soil is observed at 1.25% coir fibre inclusion. Coir being a natural product is prone to degradation and to increase the durability of the coir reinforced soil, lime is used. Lime stabilization favourably amends the geotechnical properties of the coir fibre reinforced soil.

Nonlinear analysis of fibre-reinforced plastic poles

  • Lin, Z.M.;Polyzois, D.;Shah, A.
    • Structural Engineering and Mechanics
    • /
    • 제6권7호
    • /
    • pp.785-800
    • /
    • 1998
  • This paper deals with the nonlinear finite element analysis of fibre-reinforced plastic poles. Based on the principle of stationary potential energy and Novozhilov's derivations of nonlinear strains, the formulations for the geometric nonlinear analysis of general shells are derived. The formulations are applied to the fibre-reinforced plastic poles which are treated as conical shells. A semi-analytical finite element model based on the theory of shell of revolution is developed. Several aspects of the implementation of the geometric nonlinear analysis are discussed. Examples are presented to show the applicability of the nonlinear analysis to the post-buckling and large deformation of fibre-reinforced plastic poles.

An Analysis of Genetic Variation and Divergence on Silk Fibre Characteristics of Multivoltine Silkworm (Bombyx mori L.) Genotypes

  • Kumaresan P.;Koundinya P. R.;Hiremath S. A.;Sinha R. K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제14권1호
    • /
    • pp.23-32
    • /
    • 2007
  • The nature of genetic variation and diversity among the 65 multivoltine silkworm genotypes was evaluated for 16 post cocoon characters. The components of genetic variation revealed higher PCV (60.487%) and GCV (44.56%) for evenness (variation 1) followed by cohesion (PCV=55.38%, GCV=40.36%) and non-broken filament length (PCV=32.05%, GCV=31.28%). The higher heritability ($h^2$ in broad sense) was observed for boil-off loss (95.6%) followed by non-broken filament length (95.22%). The both genotypic and phenotypic correlation indicated significant positive correlation of filament length with non-broken filament length, silk recovery, raw silk, neatness, and low neatness; and negative correlation with denier, renditta and silk waste. The principal component analysis (PCA) revealed 75.381 % of total variance from the five principal components extracted. On the basis of Mahalonobis' $D^2$ values (Ward's minimum variance), the sixty-five multivoltine silkworm genotypes were classified in to 9 clusters with substantial inter and intra cluster distances. Number of genotypes included in different clusters varied from 3 to 17. The results indicated that the optimum distance obtained in cluster VII (15.059) along with higher cluster mean values especially for filament length, non broken filament length, renditta, silk recovery, silk waste, and raw silk emphasized the utilization of these genotypes in the conventional silkworm breeding programme for improvement of multivoltine silk fibre quality. The possibility of exploiting genetic variation in post cocoon traits for efficient breeding programme is discussed.

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups

  • Spinella, Nino
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.365-382
    • /
    • 2013
  • Although shear reinforcement in beams typically consists of steel bars bent in the form of stirrups or hoops, the addition of deformed steel fibres to the concrete has been shown to enhance shear resistance and ductility in reinforced concrete beams. This paper presents a model that can be used to predict the shear strength of fibrous concrete rectangular members without stirrups. The model is an extension of the plasticity-based crack sliding model originally developed for plain concrete beams. The crack sliding model has been improved in order to take into account several aspects: the arch effect for deep beams, the post-cracking tensile strength of steel fibre reinforced concrete and its ability to control sliding along shear cracks, and the mitigation of the shear size effect due to presence of fibres. The results obtained by the model have been validated by a large set of experimental tests taken from literature, compared with several models proposed in literature, and numerical analyses are carried out showing the influence of fibres on the beam failure mode.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Influence of modification in core building procedure on fracture strength and failure patterns of premolars restored with fiber post and composite core

  • Kim, Young-Hoi;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2012
  • PURPOSE. The influence of the modified process in the fiber-reinforced post and resin core foundation treatment on the fracture resistance and failure pattern of premolar was tested in this study. MATERIALS AND METHODS. Thirty-six human mandibular premolars were divided into 4 groups (n = 9). In group DCT, the quartz fibre post (D.T. Light-post) was cemented with resin cement (DUO-LINK) and a core foundation was formed with composite resin (LIGHT-CORE). In group DMO and DMT, resin cement (DUO-LINK) was used for post (D.T. Lightpost) cementation and core foundation; in group DMO, these procedures were performed simultaneously in one step, while DMT group was accomplished in separated two steps. In group LCT, the glass fiber post (LuxaPost) cementation and core foundation was accomplished with composite resin (LuxaCore-Dual) in separated procedures. Tooth were prepared with 2 mm ferrule and restored with nickel-chromium crowns. A static loading test was carried out and loads were applied to the buccal surface of the buccal cusp at a 45 degree inclination to the long axis of the tooth until failure occurred. The data were analyzed with MANOVA (${\alpha}$= .05). The failure pattern was observed and classified as either favorable (allowing repair) or unfavorable (not allowing repair). RESULTS. The mean fracture strength was highest in group DCT followed in descending order by groups DMO, DMT, and LCT. However, there were no significant differences in fracture strength between the groups. A higher prevalence of favorable fractures was detected in group DMT but there were no significant differences between the groups. CONCLUSION. The change of post or core foundation method does not appear to influence the fracture strength and failure patterns.