• Title/Summary/Keyword: fibre

Search Result 812, Processing Time 0.026 seconds

Next Generation Fiber Length Measurement

  • Tiikkaja, Esa;Sopenlehto, Taina
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.54-59
    • /
    • 2000
  • The next generation fibre size analyser has been developed in Kajaani based on over 15 years experience in fibre measurement. This new FiberLab-analyser can measure fibre length both along the fibre centre line and as projected. The cross-sectional measurements of fibre are in principle similar to the earlier version FiberLab. Measured data are generally displayed in distributions. Some new calculations have been added, for example the fibres cross sectional area and fibre volume index both available as distributions as well. The performance of the FiberLab measurement is verified against the manual microscopic testing. These tests show that the new image analysis-based measurement well matches with the manual methods.

  • PDF

Association of the KAP 8.1 Gene Polymorphisms with Fibre Traits in Inner Mongolian Cashmere Goats

  • Liu, Haiying;Yue, Chun-Wang;Zhang, Wei;Zhu, Xiaoping;Yang, Guiqin;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1341-1347
    • /
    • 2011
  • The objective of this study was to investigate polymorphisms of keratin-associated protein 8.1 (KAP8.1) gene and its effect on fibre traits of Chinese Inner Mongolian Cashmere goats. The fibre traits data investigated were cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length. Five hundred and forty animals were used to detect polymorphisms in the complete coding sequence of the hircine KAP8.1 gene by means of PCR-SSCP. The results identified six genotypes, AA, BB, CC, AB, AC and BC, coded for by three different alleles A, B and C. Two SNPs in the coding region were confirmed by sequencing, which were T113G and G116C respectively. The relationships between the genotypes and cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length were analyzed. There were significant differences between the associations of the different genotypes with cashmere weight (p<0.01), cashmere length (p<0.05) and hair length (p<0.01). Cashmere fibre diameter was the only trait that was not associated with the genotypes. The animals of genotype AB and BB had the higher cashmere weight compared with the genotype AA. By further analysis, it appeared that the KAP8.1 genotype effects on fibre traits may be due to a mutation at the 113 locus. These results suggested that polymorphisms in the hircine KAP8.1 gene might be a potential molecular marker for cashmere weight in Cashmere goats.

Acacia - The Fibre of Choice

  • Ginting, Eduward;Burman, Ann;Kim, Daniel
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.311-316
    • /
    • 2006
  • The role of short fibre pulp - Mixed Harwood, Eucalyptus, Aspen, Birch, etc for the manufacture of different grades of paper is very well recognized. At the same time, lots of efforts are in progress to maximize the advantages while preserving their own special property. Bleached Acacia Kraft Pulp (BAKP) is comparatively new entry but gained quick recognition. BAKP was introduced to the world market by South East Asian suppliers in the late 1990's. This paper discusses in detail the role and opportunities of use of short fibre pulps. A logical technical comparison has been made between BAKP and another short fibre grades. BAKP being a short, thin-walled fibre shows several similarities with Eucalyptus pulp in terms of good bulk and stiffness. Refining energy and strength properties are very similar, but the shorter fibres and thinner cell walls give an outstanding opacity and formation compared to other commercial short fibre pulps. The collapsed and band-shaped nature gives a matchless smoothness, enabling less calendaring and exceptional printing properties. BAKP is shown to give several advantages to fine paper manufactures, compared with a number of established short fibre pulps such as Brazilian and Chilean Eucalyptus, Canadian Aspen and Indonesian Mixed Hardwood. It is important to consider refining and calendaring conditions to achieve optimum performance. For outer layers of multiply board, Acacia gives excellent coverage due to its high opacity and uniform fibre distribution. Its low roughness property gives improved printability. For tissue products, Acacia gives unique property of superior softness both in terms of hand feel and bulk softness. The high fibre population gives an impression of much higher quality due to the higher opacity and good formation.

  • PDF

Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks

  • Erdem, R. Tugrul;Kantar, Erkan;Gucuyen, Engin;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.613-625
    • /
    • 2013
  • In this study, Artificial Neural Networks (ANN) analysis is used to predict the compression strength of polypropylene fibre mixed concrete. Polypropylene fibre admixture increases the compression strength of concrete to a certain extent according to mix proportion. This proportion and homogenous distribution are important parameters on compression strength. Determination of compression strength of fibre mixed concrete is significant due to the veridicality of capacity calculations. Plenty of experiments shall be completed to state the compression strength of concrete which have different fibre admixture. In each case, it is known that performing the laboratory experiments is costly and time-consuming. Therefore, ANN analysis is used to predict the 7 and 28 days of compression strength values. For this purpose, 156 test specimens are produced that have 26 different types of fibre admixture. While the results of 120 specimens are used for training process, 36 of them are separated for test process in ANN analysis to determine the validity of experimental results. Finally, it is seen that ANN analysis predicts the compression strength of concrete successfully.

Influence of Refeeding with Vitamin, Mineral and Fibre on Protein Synthesis and Messenger Ribonucleic Acid Content in the Liver and Muscle of Fasted Chicks

  • Aman Yaman, M.;Kita, K.;Pinontoan, R.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.545-549
    • /
    • 1998
  • The influence of refeeding with either vitamin, mineral, fibre of water on protein synthesis and mRNA content in the liver and breast muscle of fasted chicks was investigated. At 15 d of age, chicks were fasted for 2 d and then refed either vitamin, mineral, fibre or water. The fractional synthesis rate (FSR) of protein was measured after 30 min of refeeding by using a large dose injection of L - 2, $6[^3H]$ phenylalanine. In the liver, FSR was reduced by fasting and tended to increase but not significantly by refeeding with vitamin or mineral. FSR was not affected by refeeding with fibre or water. There was no influence of fasting and refeeding on ribosomal capacity (the RNA : protein ratio) and ribosomal efficiency (total protein synthesised per total RNA). The absolute synthesis rate (ASR) of liver protein and hepatic mRNA content were reduced by fasting and unchanged by refeeding. In the muscle, FSR, ASR and mRNA content were significantly decreased by fasting and not recovered by refeeding with either vitamin, mineral, fibre or water. It concluded that vitamin, mineral, fibre and water have little capacity to stimulate liver and muscle protein synthesis reduced by fasting.

Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC

  • Nuaklong, Peem;Chittanurak, Jithaporn;Jongvivatsakul, Pitcha;Pansuk, Withit;Lenwari, Akhrawat;Likitlersuang, Suched
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • This study intends to produce an ultra-high performance fibre reinforced concrete (UHPFRC) made with hybrid fibres (i.e., steel and polypropylene). Compressive and tensile strength characteristics of the hybrid fibres UHPFRC are considered. A total of 14 fibre-reinforced composites (FRCs) with different fibre contents or types of fibres were prepared and tested in order to determine a suitable hybrid fibre combination. The compressive and tensile strengths of each concrete at 7 days were determined. The results showed that a hybrid mix of micro-polypropylene and steel fibres exhibited good compromising performances and is the ideal reinforcement mixture in a strong, cost-effective UHPFRC. In addition, maximum compressive strength of 167 MPa was achieved for UHPFRC using 1.5% steel fibres blended with 0.5% macro-polypropylene fibres.

Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures

  • Shaikh, F.U.A.;Taweel, M.
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • This paper presents the effects of elevated temperatures of $400^{\circ}C$ and $800^{\circ}C$ on the residual compressive strength and failure behaviour of fibre reinforced concretes and comparison is made with that of unreinforced control concrete. Two types of short fibres are used in this study e.g., steel and basalt fibres. The results show that the residual compressive strength capacity of steel fibre reinforced concrete is higher than unreinforced concrete at both elevated temperatures. The basalt fibre reinforced concrete, on the other hand, showed lower strength retention capacity than the control unreinforced concrete. However, the use of hybrid steel-basalt fibre reinforcement recovered the deficiency of basalt fibre reinforced concrete, but still slightly lower than the control and steel fibres reinforced concretes. The use of fibres reduces the spalling and explosive failure of steel, basalt and hybrid steel-basalt fibres reinforced concretes oppose to spalling in deeper regions of ordinary control concrete after exposure to above elevated temperatures. Microscopic observation of steel and basalt fibres surfaces after exposure to above elevated temperatures shows peeling of thin layer from steel surface at $800^{\circ}C$, whereas in the case of basalt fibre formation of Plagioclase mineral crystals on the surface are observed at elevated temperatures.

Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates

  • Kutlu, Darilmaz
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.359-374
    • /
    • 2011
  • In this paper, the influence of fibre orientation and aspect ratio on stability analysis of simply supported skew plates subjected to in plane loading is studied by using a four noded hybrid plate finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Some numerical problems are solved and the effects of skew angle, aspect ratio, fibre orientation and loading type on the critical buckling loads are highlighted.

Nonlinear analysis of fibre-reinforced plastic poles

  • Lin, Z.M.;Polyzois, D.;Shah, A.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.785-800
    • /
    • 1998
  • This paper deals with the nonlinear finite element analysis of fibre-reinforced plastic poles. Based on the principle of stationary potential energy and Novozhilov's derivations of nonlinear strains, the formulations for the geometric nonlinear analysis of general shells are derived. The formulations are applied to the fibre-reinforced plastic poles which are treated as conical shells. A semi-analytical finite element model based on the theory of shell of revolution is developed. Several aspects of the implementation of the geometric nonlinear analysis are discussed. Examples are presented to show the applicability of the nonlinear analysis to the post-buckling and large deformation of fibre-reinforced plastic poles.

The Role of Rumen Fungi in Fibre Digestion - Review -

  • Ho, Y.W.;Abdullah, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.104-112
    • /
    • 1999
  • Since the anaerobic rumen fungi were discovered in the rumen of a sheep over two decades ago, they have been reported in a wide range of herbivores fud on high fibre diets. The extensive colonisation and degradation of fibrous plant tissues by the fungi suggest that they have a role in fibre digestion. All rumen fungi studied so far are fibrolytic. They produce a range of hydrolytic enzymes, which include the cellulases, hemicellulases, pectinases and phenolic acid esterases, to enable them to invade and degrade the lignocellulosic plant tissues. Although rumen fungi may not seem to be essential to general rumen function since they may be absent in animals fed on low fibre diets, they, nevertheless, could contribute to the digestion of high-fibre poor-quality forages.