• Title/Summary/Keyword: fiber-embedded

Search Result 284, Processing Time 0.032 seconds

Advanced Structural Monitoring System Using Fiber Optic Sensors (광섬유 센서를 이용한 첨단 구조계측)

  • 김기수;김종우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.717-723
    • /
    • 2002
  • Recently, the interest in safety assessment of civil infrastructures is increasing in Korea. Especially, as bridge structures become large-scale, it is necessary to monitor and maintain the safety state of bridges, which requires the monitoring system that can make a long-term measurement during the service time of bridge. In this paper, advanced fiber optic sensors for long-term measurement, setup techniques of bridge monitoring system and the assessment of measured data are introduced. Attached or embedded optical fiber sensors to structural members of small and big structures including Sung San Bridge are surveyed. For the Sung San Bridge, the responses of the fiber optic sensors by 30 ton weigh truck loads with various speeds ate measured. Monitoring system is also applied to the mock-up of bridges. The monitoring capability of the advanced fiber optic sensor system was confirmed.

  • PDF

Damage Mechanics in Particle or short-Fiber Reinforced Composite (분산형 복합재료의 손상 메커니즘)

  • 조영태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.287-292
    • /
    • 1998
  • In particle or short-fiber reinforced composites. cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with the load carrying capacity of intact and broken ellipsoidal inhomogeneities embedded in an infinite body and a damage theory of particle or short-fiber reinforce composites. The average stress in the inhomogeneity represents its load carrying capacity. and the difference between the average stresses of the intact t and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori and Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

Measurement of Material Properties of Composites for High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재의 물성 측정)

  • 강동훈;박상욱;김수현;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.31-36
    • /
    • 2003
  • Recently, composite materials are widely used for nozzle, pressure vessel, skins of satellite and many structures under condition of high temperature due to good thermal characteristics such as low CTE, heat-resistance, etc. Fiber optic sensors, especially FBG(fiber Bragg grating) sensors, can be a good counterproposal of strain gages for the measurement of material properties of composites under high temperature. In this research, T700/Epoxy specimens with embedded FBG sensors were fabricated and tested at the Instron with thermal chamber from room temperature to $400^{\circ}C$. The effects of embedding optical fiber on material properties were also verified. And, the experimental results were discussed and analyzed by microphotographs of the composite specimen.

  • PDF

Flexural Behavior of Reinforced Concrete Beams Strengthened with Grid-typs Carbon Fiber Plastics (탄소격자섬유로 보강한 철근 콘크리트보의 휨파괴 특성에 관한 연구)

  • 태기호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2000
  • Flexural fracture characteristics of newly-developed Grid-type carbon fiber plastics in the deteriorated reinforced concrete structures were investigated by the four-points fracture test to verify the strengthening effects in the beam specimens. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly the reasonable area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

  • PDF

The Improvement of Survivability of Fiber Brags Grating Sensors Embedded into Filament Wound Pressure Tanks (필라멘트 와인딩된 복합재료 압력탱크에 삽입된 광섬유 브래그 격자 센서의 생존율 향상)

  • Kang, D. H.;Park, S. W.;Park, S. O.;Kim, C. G.
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. For this reason, it is necessary to monitor the tank through its operation as well as whole fabrication process. A large number of sensors must be embedded into multi points of the tank from its fabrication step for monitoring the whole tank. Fiber optic sensors, especially fiber Bragg grating(FBG) sensors are widely used for various applications because of good multiplexing capabilities. However, we need to develop the embedding technique of FBG sensors into harsh inner environment of the tank far the successful embedment. In this paper, we studied the embedding technique of a number of FBG sensors into filament wound pressure tanks considering multiplexing.

Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites

  • Mishra, P.K.;Pradhan, A.K.;Pandit, M.K.;Panda, S.K.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.439-447
    • /
    • 2020
  • This paper presents two sets of full three-dimensional thermoelastic finite element analyses of superimposed thermo-mechanically loaded Spar Wingskin Joints made with laminated Graphite Fiber Reinforced Plastic composites. The study emphasizes the influence of residual thermal stresses and material anisotropy on the inter-laminar delamination behavior of the joint structure. The delamination has been pre-embedded at the most likely location, i.e., in resin layer between the top and next ply of the fiber reinforced plastic laminated wingskin and near the spar overlap end. Multi-Point Constraint finite elements have been made use of at the vicinity of the delamination fronts. This helps in simulating the growth of the embedded delamination at both ends. The inter-laminar thermoelastic peel and shear stresses responsible for causing delamination damage due to a combined thermal and a static loading have been evaluated. Strain energy release rate components corresponding to the Mode I (opening), Mode II (sliding) and Mode III (tearing) of delamination are determined using the principle of Virtual Crack Closure Technique. These are seen to be different and non-self-similar at the two fronts of the embedded delamination. Residual stresses developed due to the thermoelastic anisotropy of the laminae are found to strongly influence the delamination onset and propagation characteristics, which have been reflected by the asymmetries in the nature of energy release rate plots and their significant variation along the delamination front.

Development of Multi-axis Nano Positioning Stage for Optical Alignment (광소자 정렬용 극초정밀 다축 위치 제어장치 개발)

  • 정상화;이경형;차경래;김현욱;최석봉;김광호;박준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.304-307
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

Development of Multi-Axis Ultra Precision Stage for Optical Alignment (광소자 정렬용 초정밀 다축 스테이지 개발)

  • 정상화;이경형;김광호;차경래;김현욱;최석봉;박준호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.213-218
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

Mechanical Properties of Hybrid FRP Rebar (하이브리드 FRP 리바의 역학적 특성)

  • 박찬기;원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.58-67
    • /
    • 2003
  • Over the last decade fiber-reinforced polymer (FRP) reinforcement consisting of glass, carbon, or aramid fibers embedded in a resin such as vinyl ester, epoxy, or polyester has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. But reinforcing rebar for concrete made of FRP rebar has linear elastic behavior up to tensile failure. For safety a certain plastic strain and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. The same should be required for FRP rebar. Thus, the main object of this study was to develop new type of hybrid FRP rebar Also, this study was evaluated to the mechanical properties of Hybrid FRP rebar. The Manufacture of the hybrid FRP rebar was achieved by pultrusion, and braiding and filament winding techniques. Tensile and interlaminar shear test results of Hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

Development of Filament Wound Composite Pressure Vessels with a Single Boss (필라멘트 와인딩법에 의한 단일 개구부 복합재료 압력용기의 개발)

  • Hwang, Byeong-Seon;Kim, Byeong-Seon;Kim, Byeong-Ha;Park, Seung-Beom;Roger, Davidson
    • 연구논문집
    • /
    • s.30
    • /
    • pp.129-135
    • /
    • 2000
  • Double boss type composite pressure bottles have been developed widely but single boss type had not because there are some difficulty in technical point. In this paper a research was performed to develop composite pressure vessel in conjunction with design, fabrication, and test. Fiber pattern and angles were decided by CADFIL software and they are [liner/$15^{\circ}$/$15^{\circ}$/$90^{\circ}$/$18^{\circ}$/$90^{\circ}$/$21^{\circ}$/$21^{\circ}$/$90^{\circ}$]. Fabrication of bottles was done by AEA's 5-axis filament winding machine. During fabrication fiber optic sensor were embedded to measure were behavior of structure at the applied internal pressure. Even though satisfied test results were not obtained, the experimental set-up of fiber optics showed the possibility for the application of filament wound vessels. However, the conventional strain and fabrication of single boss composite bottles.

  • PDF