• Title/Summary/Keyword: fiber-embedded

Search Result 284, Processing Time 0.027 seconds

Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.477-485
    • /
    • 2018
  • This study aims to investigate the influence of individual and hybrid fiber on the local bond-slip behavior of medium and high strength concrete after exposure to different high temperatures. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths in the pullout specimens were three times the bar diameter. The parameters investigated include concrete type (control group: ordinary concrete; experimental group: fiber concrete), concrete strength, fiber type and targeted temperature. The test results showed that the ultimate bond stress in the local bond stress versus slip curve of the high strength fiber reinforced concrete was higher than that of the medium strength fiber reinforced concrete. In addition, the use of hybrid combinations of steel fiber and polypropylene fiber can enhance the residual bond strength ratio of high strength concrete.

Field Test to Investigate Heat Transferring Effect of Carbon Fiber Heating Wire on the Concrete Slab (현장시험을 통한 Carbon fiber heating wire의 콘크리트슬래브 열전달 효과)

  • Kim, Hee Su;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.31-38
    • /
    • 2019
  • Field tests with carbon fiber heating wire (CFHW) embedded inside concrete slab were performed to present the alternative heating material capable of avoid the adverse effects of traditional de-freezing salt on the structures and environment. The CFHW was inserted into the concrete slab in the shape of 'ㄷ' to improve the heat superposition and the temperature on the surface was measured using iButton. The results showed that the temperature where the CFHW's were faced with each other increased to above zero after 12-hour at outdoor air temperature of $-6^{\circ}C$. Comparatively, the temperature slightly increased where the CFHW was embedded on one side because the heat was not superimposed. Hence, it can be said that the CFHW is a suitable heating material to prevent the concrete road from being frozen.

Spectrum Characteristics and Stress Induced Birefringence of Fiber Bragg Grating Embedded into Composite Laminates (복합재 평판에 삽입된 광섬유 브래그 격자의 스펙트럼특성과 응력유도복굴절)

  • Lee, Jung-Ryul;Kim, Chun-Gon;Hong, Chang-Sun
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.30-38
    • /
    • 2002
  • Fiber Bragg grating(FBG) like other optical fiber sensors also has the merit of embedding capability. To increase their actual value related to embedding capability, this paper reported the reliability and signal characteristics of FBGS embedded in composite laminates. The microphotographs of embedded optical fibers visualized the embedding environments of stripped optical fibers and coated optical fibers. Based on these microphotographs and cure monitoring performed using FBGs, we could understand that the main cause breaking the unique Bragg condition of low-birefrigence FBG were residual stress artier curing and reported the stale of stress/strain of optical fiber quantitatively. The cure monitoring also showed the history of splitting peak of a stripped FBG along cure processing. In addition, we could obtain a transverse insensitive grating(TIG) with ease by recoating a stripped FBG. TIG has good advantage for real-time signal processing.

Measurement of Transverse Strain Using PMBG Sensor (PMFBG 센서를 이용한 횡방향 변형률 측정)

  • 윤혁진;김대현;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.27-30
    • /
    • 2002
  • PMFBG sensor was fabricated using phase mask and Excimer laser. The reflected wavelength of PMFBG sensor had dual peaks due to intrinsic birefringence. To discover the polarization axes, peak sensitivity was measured under compression test. The signal characteristics of PMFBG sensor were also examined in embedding condition. The embedded PMFBG sensor in epoxy block was loaded for the transverse strain measurements. Experiments showed that the PMFBG sensor could successfully measure the transverse strain. This PMFBG sensor is useful for the structures that require measuring transverse stram.

  • PDF

Self Diagnosis Monitoring System of Carbon and Glass Hybrid Fiber Materials for Concrete Structures (CFGFRP 복합재료를 이용한 콘크리트 자기진단 모니터링)

  • Park, Seok-Kyun;Kim, Dae-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.359-362
    • /
    • 2005
  • Self diagnosis monitoring system is defined as concrete structural carbon and glass hybrid fiber materials, in response to the change in external disturbance and environments, toward structural safety and serviceability as well as the extension of structural service life. In this study, carbon and glass hybrid fiber materials were investigated fundamentally for the applicability of self diagnosis in smart concrete structural system as embedded functions of sensors.

  • PDF

Measurement of Pile Load Transfer Using Fiber Bragg Grating Sensor (광섬유 격자소자에 의한 말뚝의 하중전이 측정)

  • 오정호;이원제;이상배;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.201-208
    • /
    • 2000
  • Axial load distribution in model piles was measured by fiber Bragg Grating(FBG) sensor to investigate a possibility of analyzing the load transfer mechanism by Fiber Optic sensor system. Since FBGs of different wave lengths can be multiplexed in an optical fiber, the installation of sensor system and the measurement of strains are relatively simple, compared with consisting strain gages. In this study, FBG sensors and electric strain gages were embedded in the same piles and the distributions of load transfer by two sensor systems were measured. It was observed from the test results that the variations of axial load by both systems showed insignificant difference and that the measurements by FBG were smoother than those by strain gage. Under the environments of laboratory testing, survival rate of embedded FBG system was higher than that of strain gage. Therefore, it was concluded that the use of FBG sensor has a great potential for the measurement of load transfer for pile foundation.

  • PDF

Development of Automatic Alignment Height and Cross-section Inspection System for Fiber Bragg Grating Embedded Field Assembly Connector (FBG Embedded 현장 조립형 커넥터의 자동 정렬 및 단면 자동 검사 시스템 개발)

  • Lee, Jung-Ho;Park, Chan-Hee;Yoon, Jae-Soon;Lee, Hee-Kwan;Kim, Cheol-Sang;Kim, Jae-Won;Kim, Kyung;Kim, Jae-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.94-101
    • /
    • 2014
  • Recently, in order to reduce the time required to replace an optical jumper cord, many researchers are using a field-installable connector and applying the ferrule polishing method, ferrule mechanical contact method, or ferrule fusion contact method. However, the process of arranging the length of the optical fiber, i.e., inserting the optical fiber into the ferrule by hand and checking its cross section, takes 60% of the time required for the entire process, which increases the overall cost. Therefore, in order to make this task more cost-effective, we will develop an automated inspection system with automatic cross-sectional arrangement of a field-installable connector. This system will be able to decrease the failure rate from 10% to 2% compared with the conventional method when cutting the optical fiber inserted into the ferrule. It will also improve the productivity by decreasing the test time by 28% compared with the conventional method. Our studies showed that it was possible to reduce the production costs and improve the quality of a field-installable connector, and we expect it to dominate the market.

Mutiplexed Fiber Optic Pressure Sensor Embedded in a Reinforced Concrete Structure (철근 콘크리트 구조물에 매설된 다중화 광섬유 압력 센서)

  • Lee, Kyung-Jin;Lee, Ho-Il;Park, Jae-Hee;Kim, Myung-Gyoo;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.232-238
    • /
    • 1999
  • Single mode fiber optic interferometers using the Fabry-Perot configuration were embedded in a reinforced concrete structure. These interferometers investigated the character of phase shift and strain for internal loads. The 10 mm length of FFPI in the continuous length of single mode fiber (SMF) were produced with two pieces of SMF coated were $TiO_2$ dielectric film utilizing the fusion splicing technique. The fabricated fiber optic Fabry-Perot interferometer(FFPI) and the 6 mm length of steel bar were buried with specimen ($100{\times}100{\times}50\;mm^3$) which was made of concrete structure. The resin protects FFPI and fiber leads from squeezed concrete. Sensors at different point in the structure were multiplexed by TDM (Time Division Multiplexing) method and the deformation to the external loads at each point could be monitored simultaneously. The output signals were proportional to the external loads applied to the structure and the sensitivity of the sensors were $1.03^{\circ}/kg$ and $0.76^{\circ}/kg$ respectively.

  • PDF

Experimental Study for Shear Behavior of RC Beam Strengthened with Channel-type FRP Beam (채널형 FRP빔으로 보강된 RC보의 전단거동에 관한 실험적 연구)

  • Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • A recent and promising method for shear strengthening of reinforced concrete(RC) members is the use of near surface mounted(NSM) fiber reinforced polymer(FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. This paper illustrates a research program on shear strengthening of RC beams with NSM channel-type FRP beams which is developed in this study. The objective of this study is to clarify the role of channel-type FRP beam embedded to the beam web for shear strengthening of reinforced concrete beams. Included in the study are effectiveness in terms of spacing and angle of channel-type FRP beams, strengthening method, and shear span ratio. the study also aims to understand the additional shear capacity due to glass fiber reinforced polymer beams and carbon reinforced polymer beams. And anther objective is to study the failure modes, shear strengthening effect on ultimate force and load deflection behavior of RC beams embedded with channel-type FRP beams on the shear region of the beams.

Real-time Failure Detection of Composite Structures Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재 구조물의 실시간 파손감지)

  • 방형준;강현규;류치영;김대현;강동훈;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.128-133
    • /
    • 2000
  • The objective of this research is to develop real-time failure detection techniques for damage assessment of composite materials using optical fiber sensors. Signals from matrix cracking or fiber fracture in composite laminates are treated by signal processing unit in real-time. This paper describes the implementation of time-frequency analysis such as the Short Time Fourier Transform(STFT) to determine the time of occurrence of failure. In order to verify the performance of the optical fiber sensor for stress wave detection, we performed pencil break test with EFPI sensor and compared it with that of PZT. The EFPI sensor was embedded in composite beam to sense the failure signals and a tensile test was performed. The signals of the fiber optic sensor when damage occurred were characterized using STFT and wavelet transform. Failure detection system detected the moment of failure accurately and showed good sensitivity with the infinitesimal failure signal.

  • PDF