• Title/Summary/Keyword: fiber slip ratio

Search Result 26, Processing Time 0.02 seconds

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

Finite element analysis of shear critical prestressed SFRC beams

  • Thomas, Job;Ramaswamy, Ananth
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interface. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.

Improvement of Mechanical Properties of Mg alloys through Control of Grain Size and Texture (결정립크기와 집합조직제어를 통한 마그네슘 합금의 기계적 성질 개선)

  • Kim, W.J.;Lee, J.B.;Kim, W.Y.;Jeong, H.G.;Park, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • The effects of lowering ECAP temperature during ECAP process and Post-ECAP annealing on microstructure, texture and mechanical properties of the AZ31 alloys have been investigated in the present study. The as-extruded materials were ECAP processed to 2 passes at 553K prior to subsequent pressing up to 6 passes at 523K or 493K. When this method of lowering ECAP temperature during ECAP was used, the rods could be successfully deformed up to 6 passes without any surface cracking. Grain refinement during ECAP process at 553K might have helped the material to endure further straining at lower deformation temperatures probably by increasing the strain accommodation effect by grain boundary sliding, causing stress relaxation. Texture modification during ECAP has a great influence on the strength of Mg alloys because HCP metals have limited number of slip systems. As slip is most prone to take place on basal planes in Mg at room temperature, the rotation of high fraction of basal planes to the directions favorable for slip as in ECAP decreases the yield stress appreciably. The strength of AZ31 Mg alloys increases with decrease of grain size if the texture is constant though ECAP deformation history is different. A standard positive strength dependence on the grain size for Mg alloys with the similar texture (Fig. 1) supports that the softening of ECAPed Mg alloys (a negative slope) typically observed despite the significant grain refinement is due to the texture modification where the rotation of basal planes occurs towards the orientation for easier slip. It could be predicted that if the original fiber texture is restored after ECAP treatment yielding marked grain refinement, yield stress as high as 500 MPa will be obtained at the grain size of ${\sim}1{\mu}m$. Differential speed rolling (DSR) with a high speed ratio between the upper and lower rolls was applied to alter the microstructure and texture of the AZ31 sheets. Significant grain refinement took place during the rolling owing to introduction of large shear deformation. Grain size as small as $1.4{\mu}m$ could be obtained at 423K after DSR. There was a good correlation between the (0002) pole intensity and tensile elongation. This result indicates that tensile ductility improvement in the asymmetrically rolled AZ31 Mg alloys is closely related to the weakening of basal texture during DSR. Further basal texture weakening occurred during annealing after DSR. According to Hall-Petch relation shown in Fig. 1, the strength of the asymmetrically rolled AZ31 is lower than that of the symmetrically rolled one when compared at the same grain size. This result was attributed to weakening of fiber texture during DSR. The DSRed AZ31, however, shows higher strength than the ECAPed AZ31 where texture has been completely replaced by a new texture associated with high Schmid factors.

  • PDF

Torque Measurement of Rotating Shaft Using Fiber Bragg Grating Sensors and Rotary Optical Coupler (광섬유격자센서와 회전광학커플러를 사용한 새로운 회전축의 토크 측정방법)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1195-1200
    • /
    • 2007
  • Torque of a rotating shaft has been mostly measured by strain gages combined with either a slip ring or telemetry. However, these methods have severe inherent problems like low S/N ratio, high cost, limited number of channels and difficult installation. In this paper, a new method using FBG(fiber bragg grating) sensors and a rotary optical coupler for online non-contact torque monitoring is suggested. FBG sensor can measure both strain and temperature, and has much batter characteristics than those of a strain gage. A rotary optical coupler is a optical connecting device between a rotating shaft and stationary side without any physical contact. It has been devised for transmitting light between a rotating optical fiber and a stationary optical fiber. The proposed method uses this rotary optical coupler to connect FBG sensors on the rotating shaft to instruments at stationary side. And a reference FBG sensor is also applied to compensate the insertion loss change of the rotary optical coupler due to rotation. Three FBG sensors have been fabricated in a single optical fiber. Two FBG sensors are attached on the shaft surface to measure torque and one sensor is installed at the shaft center to compensate the insertion loss change. The torque of a rotating shaft has been successfully measured by the suggested method proving its superior performance potential.

Local Bond Stress-Slip Model of GFRP Rebars (GFRP 보강근의 부착응력-미끄럼 모델)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Glass Fiber Reinforced Polymer (GFRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of GFRP. However, there remain various aspects of GFRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between GFRP and concrete. In this study, the bond-behavior of GFRP bars in concrete is investigated via the pullout test with varying parameters: surface condition of GFRP bars and concrete compression strength. And the local bond-stress model of GFRP rabars with applying monotonc load was also derived from the present test.

  • PDF

An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP (GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가)

  • Ryu, Jae-Ho;Park, Se-Ho;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.125-135
    • /
    • 2011
  • To obtain a lower story height with a long span and better fire resistance, a new composite floor system using GFRP (glass-fiber-reinforced plastics) was proposed. This floor system consists of asymmetric steel with a web opening, a hollow core ball, concrete, and GFRP. To evaluate the flexural performance of the new composite floor system, an experiment was conducted. The test parameters were the presence of GFRP, the void ratio in relation to the hollow core balls, and the web opening. The test results showed that the resistance and stiffness of the specimen with GFRP were 10% higher than those of the reference specimen, and that fully composite action was accomplished up to the yielding point. After the attainment of the yield strength, the ductility of the specimen was reduced due to the stress concentration around the web openings. The slip between the concrete and steel beam, however, was small. Thus, in the design of the proposed new floor systems, it is desirable that the calculated resistance be reduced by 15%, for safety.