• 제목/요약/키워드: fiber reinforced materials

검색결과 1,518건 처리시간 0.027초

Numerical Analysis on the Behavior of Carbon Fiber Grid Reinforced Concrete Members (탄소섬유그리드 보강 콘크리트 부재의 거동에 대한 수치해석적 연구)

  • 김학군;정재호;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.143-148
    • /
    • 1999
  • In this paper we present the results of an analytical investigation on the existing concrete structures which are reinforced with carbon fiber grid. The carbon fiber grid and polymer mortar are utilized in the reinforcement of concrete column, beam, and tunnel lining. The physical and mechanical properties of the carbon fiber grid and polymer mortar were obtained experimentally and then used in the analytical investigation. In the analysis concrete structures are modeled with 3-D solid finite elements and the carbon fiber grid is modeled with space frame elements. Through the investigation reinforcing effect of carbon fiber grid on the existing concrete structures is confirmed.

  • PDF

Physical Properties of Glass Fiber Reinforced Nylon 6,6 and lonomer Blends (Glass Fiber로 강화된 Nylon 6,6 / Ionomer 블렌드의 물리적 특성)

  • 박광석;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.536-539
    • /
    • 1999
  • Physical properties of glass fiber-reinforced nylon 6,6 and ionomer blends were investigated in variation of ionomer and glass fiber content. With the increase of ionomer content, tensile strength, impact strength and flexural strength decreased, whereas increasing glass fiber content, these properties were improves. Both permittivity and tan $\delta$ remain unchanged. Space charge distribution was investigated by PEA (Pulsed electroacoustic) method. Heterocharge was found in nylon 6,6 and 히ass fiber composites, whereas composites, whereas when ionomer is blended.

  • PDF

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites (열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구)

  • Baek, Un-Gyeong;Nam, Gibeop;Roh, Jae-Seung;Park, Sung-Eun;Roh, Jeong-U
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.136-142
    • /
    • 2021
  • 3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.

Mechanical Properties of Steel-Fiber Reinforced Concrete (강섬유보강콘크리트의 역학적 거동 특성)

  • 홍성구;권숙국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제31권3호
    • /
    • pp.81-91
    • /
    • 1989
  • The aims of this study were to determine mechanical properties of steel-fiber reinforced concrete under splitting tensile, flexural and compressive loading, and thus to improve the possible applications of concrete. The major factors experimentally investigated in this study were the fiber content and the length and the diameter of fibers. The major results obtained are summarized as follows : 1.The strength, strain, elastic modulus and energy obsorption capability of steel-fiber reinforced concrete under splitting tensile loading were significantly improved by increasing the fiber content or the aspect ratio. 2.The flexural strength, central deflection, and flexural toughness of steel4iber reinforced beams were significantly improved by increasing the fiber content or the aspect ratio. And flexural behavior characteristic was good at the aspect ratio of about 60 to 75. 3.The strength, strain, and energy absorption capability in compression were increased with the increase of the fiber content. These effects were not so sensitive to the aspect ratio. The energy absorption capability was improved only slightly with the increase of the fiber length. 4.The elastic modulus, transverse strains, and poisson's ratios in compression were not influenced by the fiber content. 5.The steel-fibers were considered to be appropriated as the materials covering the weakness of concrete because the mechanical properties of concrete in tension and flexure were significantly improved by steel-fiber reinforcement.

  • PDF

The R & D of SiC Fiber Reinforced Composites for Energy and Transportation Applications

  • Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.5-13
    • /
    • 2006
  • Based on the inventions of continuous ceramic fibers, such as C, SiC, $Al_2O_3$ etc., by polymer precursor driven methods, there have been many efforts to fabricate ceramic continuous fiber reinforced composite materials with metals and ceramics matrices. The main purpose of the R & D efforts has been to produce materials for severe environments, including advanced energy systems, advanced transportation systems. The efforts have been started from the R & D of metal matrix composite materials and now the strong emphasis on ceramic matrix composites R & D can be recognized. This paper provides a brief review about the national efforts to establish advanced composite materials for future industries starting from mid 70s. C/Al and SiC/Al are the typical examples to be applied transportation systems and energy systems. The excellences in specific strength and overall mechanical properties, the excellences in environmental resistance make those materials as potential materials for advanced ocean construction and marine transportation systems. About the recent progress in ceramic fiber reinforced ceramic composites, advanced SiC/SiC composites including NITE-SiC/SiC will be introduced and the present status will be introduced.

  • PDF

Shear Capacity Determination of Steel Fiber Reinforced RC Columns (강섬유 보강 RC 기둥의 전단능력 산정)

  • 이현호;장극관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.891-896
    • /
    • 2001
  • As composite materials, the addition of steel fiber in concrete significantly improves the engineering properties of structural members, notably shear strength and ductility, In this study, shear capacity evaluation method according to steel fiber contents was proposed from the literature surveys and member tests. For this, previously proposed five shear strength equation were examined and evaluated by maximum shear strength and shear capacity ratio. From the parametric study and regression analysis, following conclusion can be made; the maximum shear strength of steel fiber reinforced column will be estimated by relative shear capacity ratio.

  • PDF

Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages (강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구)

  • Lee, Chang-Joon;Shin, Sung-Woo
    • Journal of the Korean Society of Safety
    • /
    • 제24권6호
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.

Interfacial and Thermal Characteristics of Natural Fiber Composites Reinforced with Henequen Surface-Treated with EBI

  • Pang Yansong;Han Seong Ok;Cho Donghwan;Drzal Lawrence T.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.88-91
    • /
    • 2004
  • In this study, a number of natural fiber henequen reinforced polymer matrix composites were successfully fabricated by means of a compression molding technique using chopped henequen fibers surface-treated with different electron beam irradiation (EBI) dosages, thermoplastic poly(butylene succinate), thermosetting unsaturated polyester and phenolic resins. Their interfacial and thermal characteristics were studied in terms of interfacial shear strength, fracture surface, dynamic mechanical properties, dimensional stability, and thermal stability using single fiber microbonding test, SEM, DMA, TMA, and TGA. The results show that their interfacial and thermal properties significantly depend on the intensity of EBl treatment on the natural fiber surface.

  • PDF