• Title/Summary/Keyword: fiber reinforced composite materials

Search Result 994, Processing Time 0.029 seconds

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

A Study on the Evaluation of the Failure for Carbody Structures made of Laminated Fiber-Reinforced Composite Materials (섬유강화 적층 복합재 차체 구조물의 파손평가 연구)

  • Shin Kwang-Bok;Hahn Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.65-72
    • /
    • 2003
  • In order to evaluate the strength of carbody structures of railway rolling stock made of laminated fiber-reinforced composite materials, total laminate approach was introduced. Structural analyses were conducted to check the basic design of the hybrid composite carbody structure of the Korean Tilting Train eXpress(TTX) with the service speed of l80km/h. The mechanical tests were also conducted to obtain strengths of composite laminates. The results shown that all stress components of composite carbody structures were inside of failure envelopes and total laminate approach was recommended to predict the failure of composite carbody structures at the stage of the basic design.

  • PDF

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향)

  • Yoon, Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Development of the Hybrid Composite Journal Bearing (하이브리드 복합재료 저널 베어링의 개발)

  • Kim Seong Su;Park Dong Chang;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.63-66
    • /
    • 2004
  • In this study, a hybrid composite journal bearing composed of carbon fiber reinforced phenolic composite liner and metal backing was manufactured to solve the seizure problem of metallic journal bearing materials because the carbon fiber has self-lubricating ability and the phenolic resin has thermal resistance characteristics. To estimate the wear resistance of carbon fiber phenolic composite, wear tests were performed at several pressures and velocities. The oil absorption characteristics, coefficient of thermal expansion, strength and stiffness of the composite were also tested. Using the measured stiffness values, the thermal residual stresses in the composite were calculated to check the reliability of the composite journal bearing.

  • PDF

A Study on the Cutting Characteristics of the Glass Fiber Reinforced Plastics by Drill Tools (드릴에 의한 유리섬유강화플라스틱의 절삭특성에 관한 연구)

  • 박종남;조규재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.15-21
    • /
    • 2004
  • Composite materials are widely used to make all kinds of machine parts, internal and structural materials of cars, aerospace industries, building structures, ship materials, sporting goods and others. It is worth the while to use composite materials as various substitutions when compared with others. But the use is limited in the field of the mechanical processing because of its difficulties in processing. Thus, it is proved that the surface is rough in and out of the hole processing the GFRP with HSS drill in the vertical machining center.

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

Interfacial and Thermal Characteristics of Natural Fiber Composites Reinforced with Henequen Surface-Treated with EBI

  • Pang Yansong;Han Seong Ok;Cho Donghwan;Drzal Lawrence T.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.88-91
    • /
    • 2004
  • In this study, a number of natural fiber henequen reinforced polymer matrix composites were successfully fabricated by means of a compression molding technique using chopped henequen fibers surface-treated with different electron beam irradiation (EBI) dosages, thermoplastic poly(butylene succinate), thermosetting unsaturated polyester and phenolic resins. Their interfacial and thermal characteristics were studied in terms of interfacial shear strength, fracture surface, dynamic mechanical properties, dimensional stability, and thermal stability using single fiber microbonding test, SEM, DMA, TMA, and TGA. The results show that their interfacial and thermal properties significantly depend on the intensity of EBl treatment on the natural fiber surface.

  • PDF

Wear Properties of the Alumina Short Fiber Reinforced Tin-Bronze Matrix Composites manufactured by Hot Pressing (가압소결법으로 제조된 알루미나 단섬유 보강 청동기지 복합재의 마모특성)

  • Choi, Jun-Ho;Huh, Moo-Young
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.398-409
    • /
    • 1995
  • The wear properties of the alumina short fiber reinforced tin-bronze matrix composites manufactured by hot pressing was studied at the room temperature and $350^{\circ}C.$ The wear loss of various specimens having different constituent and different density was examined by a pin-on-disc type wear testing machine. The results were discussed by the observation of the worn surface morphology and the analysis of the composition on the worn surfaces. Since the reinforced effect of the alumina fiber on the wear resistance was dependent on the strength of alloy matrix, the pressureless sintered composites having a lower matrix strength showed a marked increase in wear resistance by the fiber reinforcement. As the wear condition became severe, the fiber reinforcement was more effective. The delamination on the wear surface was observed in the pressureless sintered specimens having pores which are related to the initiation and the propagation of cracks. However, the wear mechanism acting on a big failure area was not found on the wear surfaces of the hot pressed specimens having a few pores.

  • PDF

A Study on the high-velocity impact resistance of fiber reinforced metal laminate materials (섬유강화 금속 적층 재료의 고속 충격 저항성에 관한 연구)

  • 손세원;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1378-1381
    • /
    • 2003
  • Recently, high-performance composite materials have been used for various industrial fields because of their superior high strength, high stiffness and lower weight. In this study, manufactured fiber reinforced metal laminate materials are composed of two parts. One is hard-anodized A15083-O alloy as a face material and the other is high strength aramid fiber (Twaron CT709) and polyethylene fiber(Dyneema HB25) laminates as a back-up material. Resistance to penetration is determined by protection ballistic limit(V$\sub$50/, a static velocity with 50% probability for complete penetration) test method. V$\sub$50/ tests with 0$^{\circ}$ obliquity at room temperature were conducted with 5.56mm ball projectiles that were able to achieve near or complete penetration during high velocity impact tests.

  • PDF

Algae Based Energy Materials (해조류를 이용한 친환경 에너지소재)

  • Han, Seong-Ok
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • Recently, sea algae cultivation as carbon sink and carbon dioxide fixation have been considered. Also, various researches on bioenergy derived from sea algae and the utilization of fibers, saccharide, and lipid of sea algae have been performing. Till now, algae fibers has been used for manufacturing of paper and reinforcing of polymer composites and the extracts of sea algae are used for cosmetics, pharmaceutical materials and food such as agar. Especially, algae fiber has so similar properties to cellulose in terms of crystallinity and functional groups that it can be utilized as reinforcements of biocomposites. Biocomposites as alternatives of glass fiber reinforced polymer composites are environmentally friendly polymer composites reinforced with natural fibers and are actively applying to the automobiles and construction industries. In this paper, characteristics of algae fiber and biocomposites reinforced with algae fiber as environmentally friendly energy materials have been introduced.

  • PDF