• Title/Summary/Keyword: fiber properties

Search Result 4,910, Processing Time 0.03 seconds

Effects of fiber survival rate on Mechanical properties in Light weight short fiber reinforced composites for Automobile Application (자동차 경량화를 위한 단섬유강화 복합재료에서의 섬유생존율이 기계적 물성에 미치는 영향에 관한 연구)

  • Choi, Young-Geun;Lee, Sang-Hyoup;Lee, In-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.267-273
    • /
    • 2001
  • In this study, the survival rate of fiber is investigated by nozzle size difference in injection/mold sides. The survival rate of fiber is influenced about the nozzle size differ. Also, The mechanical properties of short carbon glass fiber reinforced polypropylene are experimentally measured as functions of fiber volume fraction and nozzle size difference. These mechanical properties are compared with the survival rate of fiber and fiber volume fraction using image analysis after pyrolytic decomposition. The survival rate of fiber as well as fiber volume fraction is influenced by injection processing condition, the used materials, mold conditions and nozzle sides difference, etc, In particular, the survival rate of fiber is great influenced when injection/mold nozzle sides are different more than that of the same. Consequently, the mechanical properties of short carbon/glass fiber reinforced polypropylene arc improved as the nozzle sides are the same in injection mold sides.

  • PDF

Effects of Reinforcements Type on Mechanical Properties of Metal Matrix Composites (보강재의 형태와 종류가 금속복합재료의 기계적 물성에 미치는 영향 연구)

  • 남현욱;조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.79-82
    • /
    • 2001
  • In this research, tile effects of reinforcements type on mechanical properties of MMCs were studied. Six kinds preform were fabricated by using Saffil short fiber, HTZ short fiber, $Al_2O_3$ particle, and SiC particle. MMCs were fabricated by using squeeze casting methods. Various tests were conducted to show the effects of reinforcements type on mechanical properties of MMCs. Tensile and compressive properties of MMCs depend on short fiber, however wear properties depend on particle reinforcement. Generally, properties of fiber/particle hybrid MMCs were excellent than those of MMCs with short fiber.

  • PDF

A Study on Bursting Properties of Short-Fiber Reinforced Chloroprene Rubber (단섬유 강화고무의 파열특성 연구)

  • Ryu Sang-Ryeoul;Lee Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.543-549
    • /
    • 2006
  • The bursting properties under various conditions were investigated to ascertain the optimum conditions to yield the best properties. Fiber aspect ratio (AR: length of fiber/diameter of fiber), interphase condition and fiber content were considered as variables which impact the bursting pressure, bulge constant, torsional rigidity ratio. The bursting pressure of reinforced rubber increases up to 8.73 times compared to the virgin material. The better interphase condition shows the higher bursting pressure at given AR and fiber content. The bulge constant and torsional rigidity highly decrease with increasing AR and better interphase condition at same fiber content. The bulge constant and torsional rigidity reveal the minimum of 11% and 0.6% of the matrix, respectively. The bursted shape after test shows the different patterns between unfilled and reinforced rubbers. The case of virgin rubber shows a radiating shape while that of reinforced rubber shows a fluctuating straight line. Overall, it was found that the fiber AR and interphase condition have an important effect on bursting properties.

The Effects PPF Fiber on Concrete Properties (PPF 섬유가 콘크리트의 물성에 미치는 영향)

  • 한만엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.150-155
    • /
    • 1993
  • The use of polypropylene fibers in concrete has been widely advertised by the fiber manufacturers. However, the behavior of concrete containing plastic fibers has not been fully understood. The effects of fiber on concrete have been forcused on shrinkage crack control mainly from field observation, and the mechanism and the side effect of fiber such as workability reduction have been neglicted. In this paper, the effect of fiber on workability and shrinkage properties have been studied. The addition of fiber significantly reduce workability and requires additional water to maintain the workability, which causes adversal effects on concrete properties.

  • PDF

A Study on the Mechanical Properties of Polypropylene Fiber Reinforced Concrete According to the Fiber Types (폴리프로필렌 섬유보강콘크리트의 섬유형태에 따른 역학적 특성에 관한 연구)

  • 박승범;오광진;박병철;장석호;이봉춘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.321-327
    • /
    • 1996
  • The result of an experimental study on the mechanical properties of different types of polypropylene fiber reinforced concrete are presented in this paper. This study has been performed to obtain the properties of PFRC such as slump, Vee-Bee time, compressive strength, tensile strength, flexural strength, toughness and resistance to impact. The test variables are fiber content, fiber types, fiber length and W/C ratio. Polypropylene fibers were effective in reinforcing the matrix. A remarkable increase in toughness was observed by the addition of polypropylene fibers.

  • PDF

Evaluation of morphological properties and papermaking properties of corn biomass (목질섬유 대체를 위한 옥수수 바이오매스의 형태적 특성 및 초지 특성 평가)

  • Sung, Yong-Joo;Kim, Wan-Jung;Kim, Dong-Seop;Seo, Yung-Bum;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.61-66
    • /
    • 2010
  • Corn stalk, one of the most abundant agricultural residue in the world, was examined in this study to use it as an alternative fiber source of wood fiber. In order to find the proper way to utilize corn stalk more efficiently, the morphological properties and the papermaking properties of the, bast fibers and the corn pith, were evaluated respectively. Although the bast fiber fraction showed comparable properties to those for hardwoods in the fiber properties and the papermaking properties, the pith resulted in low brightness and low drainage rate. But the short and flexible fibers in pith fraction led to dense and compact handsheet structure, correspondingly the higher sheet strength. There big differences in properties between bast fiber and pith should be considered for the fully utilization of corn stalk.

Dyeing Properties of Nylon 66 Nano Fiber with High Molecular Mass Acid Dyes

  • Lee Kwon Sun;Lee Beom Soo;Park Young Hwan;Park Yoon Chul;Kim Yong Min;Jeong Sung Hoon;Kim Sung Dong
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2005
  • Research and development of nano fiber products is very active over the world. Physical characteristics and dyeing properties of nylon 66 nano fiber were investigated in this study. X-ray diffraction, DSC, analysis of amino end group, and water absorption were performed to get information concerning physical properties of nano fiber. Nylon 66 nano fiber was dyed with high molecular mass acid dyes. Effects of dyeing temperature, pH of dyeing solution, and concentration of acid dyes on dyeing properties such as rate of dyeing and the extent of exhaustion, were examined and compared to those of regu­lar fiber. It was found that nano fiber adsorbed acid dyes at lower temperature, got rapidly dyed, and its extents of exhaustion at specific dyeing temperature were higher than regular fiber. It was also observed that nano fiber could adsorb a large amount of acid dye without a significant loss in the extent of exhaustion. Washing fastness of the dyed nano fiber was lower by $1/2\~1$ grade, light fastness by 1 grade than the dyed regular fiber.

A Study on the Dynamic Properties of Cement Mortar with Recycled PET Fiber (폐PET섬유를 혼입한 시멘트모르터의 역학적 특성에 관한 연구)

  • 김영근;김상철;김명훈
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.77-86
    • /
    • 2002
  • In this study we intended to investigate properties of cement mortar with recycled PET fiber, PE fiber, and PP fiber such as slump flow, compressive strength, tensile strength, and flexural strength. As results of experiment, several properties of specimen with recycled PET fiber were little low comparing those of specimen with PE fiber and PP fiber. But if we see from point of economy and recycle of industrial wastes, it has enough reason to be used. Compressive strength of specimen with recycled PET fiber at 56 days was about 10% higher, but tensile strength and flexural strength were lower than that of no-fiber.

  • PDF

Influence of Organic Fiber Kinds on Engineering Properties of Concrete (유기질 섬유 종류가 콘크리트의 공학적 특성에 미치는 영향)

  • Shin Hyun-Sup;Kim Kwang-Ryeon;Lee Gun-Cheol;Kim Byung-Gi;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.27-30
    • /
    • 2006
  • This study investigated influence of organic fiber type and contents on engineering properties of concrete. Test showed that increase of fiber contents decreased fluidity of fresh concrete and it was even worse in concrete adding cellulose fiber. It is decided that concrete containing more than proper level of fiber should be considered. In addition, concrete adding more fiber, nylon and cellulose, resulted in increase of air content but it was satisfied in aimed value. Bleeding capacity of concrete containing more fiber significantly declined and setting time of that was also slightly retarded. For the properties of strength, both compressive and tensile strength of fiber containing concrete were indicated at similar value to control concrete. However, it is clear that if those concrete containing fiber revised the value of increased air contents at fresh state, the strength value of that would be slightly increased.

  • PDF

A Study on the Dynamic Properties of Cement Mortar with Recycled PET Fiber (폐PET섬유를 혼입한 시멘트모르터의 역학적 특성에 관한 연구)

  • Kim, Young-geun;Kim, Sang-cheol;Kim, Myung-hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.113-122
    • /
    • 2002
  • In this study we intended to investigate properties of cement mortar with recycled PET fiber, PE fiber. and PP fiber such as slump flow, compressive strength, tensile strength, and flexural strength. At results of experiment. several properties of specimen with recycled PET fiber were little low comparing those of specimen with PE fiber and PP fiber. But if we see from point of economy and recycle of industrial wastes, it has enough reason to be used. Compressive strength of specimen with recycled PET fiber at 55 days was about 10% higher. but tensile strength and flexural strength were lower than that of no-fiber.