• Title/Summary/Keyword: fiber product

Search Result 534, Processing Time 0.172 seconds

Theoretical Analysis on a Liquid-Liquid Static Extractor Using Highly Packed Fiber Bundle (고밀집 섬유 집합체를 이용한 정적 액-액 추출 장치의 이론적 해석)

  • Kim, Kwang-Wook;Byeon, Kee-Hoh;Lee, Eil-Hee;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.416-424
    • /
    • 1997
  • Mass transfer mechanism and concentration profiles in the axial direction at each phase were analyzed and simulated by a theoretical modeling on a liquid-liquid static contactor using highly packed fiber bundle. The concentrations at the end of the fiber extractor calculated at several operational conditions were compared with experimental results. The fiber extractor could be completely predicted by a plug flow model without axial dispersion. A parameter used in the model equations, $k_a{\sigma}$ called the product of mass transfer coefficient and mass transfer area per unit length of the fiber extractor in the axial direction, which was determined by a curve-fitting, was confirmed to be a unique characteristic value of the fiber extractor, and was about 0.0327cm2/sec.

  • PDF

Solitin Pulse Generation with Mode-Locked Erbium-Doped Fiber Laser Using Nonlinear Amplifying Loop Mirror (Nonlinear Amplifying Loop Mirror를 사용하여 모우드 록킹된 Erbium 첨가 광섬유 레이저에서 발생하는 솔리톤 펄스)

  • 박희갑;임경아
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.142-147
    • /
    • 1995
  • Soliton pulse outputs are generated with figure '8' type erbium-doped fiber laser mode-locked by using a fiber loop mirror. The fiber loop mirror consists of an erbium-doped fiber amplifier at the one end of the loop, and 504 m-long dispersion-shifted fiber as a nonlinear medium. By pumping with a $1.48{\mu}m$ wavelength laser diode and adjusting the polarization controllers inside the loop, soliton pulses are generated with 1574 nm center wavelength and 1.2 nm linewidth. The soliton pulses are found randomly spaced within the fundamental period corresponding to cavity round trip time. The autocorrelation trace shows that the pulse width is 2.4 ps, which is in good agreement with the theoretical prediction. The pulsewidth- bandwidth product is found to be 0.348 which means that the pulses are nearly transform-limited.imited.

  • PDF

An Isotopic Study of the Effects of Refining on Fiber

  • FRANCES L WALSH; SUJIT BANERJEE
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.31-36
    • /
    • 2006
  • Tritium has been used to directly measure the exchangeable hydrogen in bleached softwood kraft pulp. The hydrogen atoms associated with hydroxyl groups in pulp or with water contained in the pulp can dissociate and exchange with the hydrogen atoms in bulk water. Tritium is a radioactive isotope of hydrogen and behaves almost identically to it. The distribution of tritium between pulp and water ($k_{pw}$) can be easily measured and becomes an index of the protons available fur hydrogen bonding. Bleached kraft pulp was refined in a PFI mill to a range of freenesses. Tritiated water was added and the amount exchanged measured. There was a slight steady increase in $k_{pw}$ until approximately 300 CSF; $k_{pw}$ then rose sharply between 300 CSF and 100 CSF. This rise appears to correlate with FSP. It is likely that the action of refining on the fiber reaches a threshold at about 300 CSF causing the fiber surface to break open creating exponentially more surface area. This theory is visually confirmed through light microscopy. The slow increase in fibrillation of the fibers above 300 CSF correlates with the increase in $k_{pw}$. Beyond the threshold of 300 CSF a dramatic difference in fibrillation is shown, also corresponding with the large increase in $k_{pw}$. The freeness difference around 300 CSF is small, but the change in fiber properties is extreme within this region. This change in properties could lead to sheet breaks and other disruptions when producing products around the threshold. This study leads to a better understanding of how fiber changes during refining, resulting in a practical benefit of target freeness determination. Presently, freeness is selected based on product quality and on some measure of runnability. Yet, there are other considerations, demonstrated by the extreme change in fiber properties around 300 CSF.

  • PDF

Optimization of Extrusion Process Conditions to Increase the Corn Fiber Gum and Soluble Arabinoxylan Yield from Corn Fiber (옥수수 섬유질로부터 검과 수용성 아라비노자일란의 수율향상을 위한 압출성형 조건의 최적화)

  • Jeon, Sujung;Ryu, Gihyung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.149-157
    • /
    • 2015
  • The effects of feed moisture content (25, 35, and 45%), screw speed (230, 250, and 270 rpm), and barrel temperature (130, 140, and $150^{\circ}C$) on the product yield and soluble arabinoxylan (SAX) content from destarched corn fiber (DCF), and its optimization were investigated. The yield and SAX content of corn fiber gum (CFG) from the extruded destarched corn fiber (EDCF) were higher than those of DCF. Statistical analyses revealed that the feed moisture content and barrel temperature had a significant effect on the CFG yield and total SAX content. The optimum extrusion pretreatment conditions were as follows: feed moisture content, 30%; screw speed, 260 rpm; barrel temperature, $133^{\circ}C$. This study showed that the response surface methodology was suitable for the optimization of the extrusion conditions used to maximize the CFG yield and total SAX content from EDCF.

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.

Developing Advanced Total Recycling Method of FRP Boats (FRP선박의 일괄 재처리 방법의 개선)

  • Lee, Seung Hee;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Since 1990s, the major recycling methods for mechanical recycling of FRP(Fiber Reinforced Plastics)boats has involved shredding and grinding of the scrap FRP in a new recycled product. But still it leads to secondary problem such as air pollution, unacceptable shredding noise level and few limited applications. This study is to propose a newly advanced method which is more efficient and environment friendly waste FRP regenerating system. As extracting FRP layer and making the recycled fiber for recycled-fiber reinforced concrete(RFRC) from waste FRP, the recycling process has some merits in a sense of the recycling energy and the environmental effects. In this study, for those tasks, spectro-chemical differentiation method and coloring water-soluble dye treatment makes the roving layer more distinguishable photophysically. Also that has remarkably reduced safety hazards and energy. Using the mechanical properties of polymers and composite, FRP with the orthotropic and laminated plastic structure has been easily separated in the new extracting system. Also the new method has introduced five kind of separating manuals for the some different compositions of FRP boats. The roving fiber of laminated glass-fiber layer is as good as the polyvinyl fiber which is cost-high commercial fiber to increasing strength of concrete products. The early study has shown the effectiveness of laminated glass-fiber layer which also is chemical-resistant due to the resin coating. These results imply that more efficient and environment friendly recycled glass fiber can be better applied to the fiber reinforced concrete(FRC) substitute and this study also has shown wide concrete applications with RFRC from the waste FRP boat.

Fabrication and characterization of glass with E-glass fiber composition by using silica-alumina refused coal ore (사암계 석탄폐석을 활용한 E-glass fiber 조성의 유리 제조 및 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.180-188
    • /
    • 2013
  • The glass of E-glass fiber composition was fabricated by using refused coal ore which is obtained as by-product from Dogye coal mine in Samcheok. We used silica-alumina refused coal ore which has low carbon content relatively, and the amount of refused coal ore has been changed from 0 to 35 % in batch composition. E-glass was fabricated by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different refused coal ore composition of 0~35 %. We obtained a transparent and clear glass with high visible light transmittance value of 81~84%, thermal expansion coefficient of $5.39{\sim}5.61{\times}10^{-6}/^{\circ}C$ and softening point of $851{\sim}860^{\circ}C$. The glass fiber samples were also obtained through fiberizing equipment at $1150^{\circ}C$, and tested chemical resistance and tensile strength to evaluate the mechanical property as a reinforced glass fiber of composite material. As the result, we identified the properties of E-glass fiber by using refused coal ore are plenty good enough compare to that of normal E-glass without refused coal ore, and confirmed the possibility of refused coal ore as for the raw material of E-glass fiber.

The Perceived Importance Weight of Product Information Cues in E-Shopping (온라인 쇼핑에서 소지자가 지각하는 제품 정보 중요성의 비중)

  • Lee Kyu-Hye;Park Jihye
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.3 s.151
    • /
    • pp.470-480
    • /
    • 2006
  • Consumer may perceive needs of certain product information online rather than the number of pieces of information available for decision making. In addition, consumers may seek information that is more relevant to apparel category. Moreover, involved consumers intensify information seeking and seek certain information. The purpose of this study is to identify the perceived importance weight of each information cue when shopping apparel via the Internet, to investigate the differences of the perceived importance weight of product information cues in product category, and to examine the relationship between apparel involvement and the perceived importance weight of product information cues. This study employed a single-factor within-subjects design experiment that simulated online purchase situation for two product types, Jeans and a Shirt. A total of 125 college students participated in this study. Results indicated that selected information such size available, price, style, color description, item measurement, stock available, and item quality (in sequence) can be considered as global cues to judge product quality and influence purchase decision regardless of product category. The significant multivariate effects for product category on the perceived importance weight of product information cues were found. Personalization, fiber content, and fabric structure were product specific information cues. Consumers' product involvement significantly influenced the perception of information weight. Therefore, product information can be personalized based on consumer involvement

A novel Fabry-Perot fiber optic temperature sensor for early age hydration heat study in Portland cement concrete

  • Zou, Xiaotian;Chao, Alice;Wu, Nan;Tian, Ye;Yu, Tzu-Yang;Wang, Xingwei
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • Concrete is known as a heterogeneous product which is composed of complex chemical composition and reaction. The development of concrete thermal effect during early age is critical on its future structural health and long term durability. When cement is mixed with water, the exothermic chemical reaction generates hydration heat, which raises the temperature within the concrete. Consequently, cracking may occur if the concrete temperature rises too high or if there is a large temperature difference between the interior and the exterior of concrete structures during early age hydration. This paper describes the contribution of novel Fabry-Perot (FP) fiber optic temperature sensors to investigate the thermal effects of concrete hydration process. Concrete specimens were manufactured under various water-to-cement (w/c) ratios from 0.40 to 0.60. During the first 24 hours of concreting, two FP fiber optic temperature sensors were inserted into concrete specimens with the protection of copper tubing to monitor the surface and core temperature change. The experimental results revealed effects of w/c ratios on surface and core temperature developments during early age hydration, as well as demonstrating that FP fiber optic sensors are capable of capturing temperature variation in the concrete with reliable performance. Temperature profiles are used for calculating the apparent activation energy ($E_a$) and the heat of hydration (H(t)) of concrete, which can help us to better understand cement hydration.

Optimal Design of Long-fiber Composite Cover Plate with Ribs (리브를 가진 장섬유 복합재료 커버 플레이트의 최적설계)

  • Han, Min-Gu;Bae, Ji-Hun;Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 2017
  • Carbon fiber reinforced composites have light weight and high mechanical properties. These materials are only applicable in limited shape structure cause by complex curing process and low drapability. To solve this problem, Long Fiber Prepreg Sheet (LFPS) has been proposed. In this research, electric device cover plate was selected and designed by using LFPS. Before the design process, we analyzed the target structure to which the rib structures were applied. And 8-inch tablet PC product was selected. For FE analysis, simple loading and boundary conditions were applied. Stiffness of rib structure was investigated according to the rib pattern and shape changes. Rib pattern and shape were selected based on fixed volume condition analysis results. And uneven rib width model was selected for the best case whose deflection was reduced 6~10% than uniform rib model.