• Title/Summary/Keyword: fiber optic sensing

Search Result 151, Processing Time 0.028 seconds

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Song, Yoon-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1100-1109
    • /
    • 2006
  • In this study, two different technologies which can measure temperature simultaneously at many points are introduced. One is to use a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel within a single cable. The other is to use an optic fiber with Distributed Temperature Sensing (DTS) system. The difference between two technologies can be summarized as follows. A thermal sensor cable has a concept of 'point sensing' that can measure temperature at accurate position of a thermal sensor. So the accuracy and resolution of temperature measurement are up to the ability of the thermal sensor. Whereas optic fiber sensor has a concept of 'distributed sensing' because temperature is measured by ratio of Stokes and anti-Stokes component intensities of Raman backscatter that is generated when laser pulse travels along an optic fiber. It's resolution is determined by measuring distance, measuring time and spatial resolution. The purpose of this study is that application targets of two temperature measurement techniques are checked in technical and economical phases by examining the strength and weakness of them. Considering the functions and characteristics of two techniques, the thermal sensor cable will be suitable to apply to the assessment of groundwater flow, geothermal distribution and grouting efficiency within 300m distance. It is expected that the optic fiber sensor can be widely utilized at various fields (for example: pipe line inspection, tunnel fire detection, power line monitoring etc.) which need an information of temperature distribution over relatively long distance.

  • PDF

Experimental Study on Levee Monitoring System for Abnormality Detection Using Fiber Optic Temperature Sensing (광섬유 온도 센싱을 활용한 제방의 이상 감지 모니터링 시스템에 대한 실험 연구)

  • Ahn, Myeonghui;Ko, Dongwoo;Ji, Un;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.120-127
    • /
    • 2019
  • Medium-scale levee experiments were performed to monitor the infiltration and failure of levee body by applying fiber optic temperature sensing. In this study, bio-polymer soil was spread in the levee slope to increase the strength and intensity. Therefore, the infiltration and failure by overflows were produced in a different way compared to general soil type of levees. This was also observed in the experiment data for temperature changes monitored by fiber-optic distributed temperature sensing system. Through the analysis of temperature changes at specific location by time, the location and initiation time for physical changes and infiltration in levee body could be identified based on temperature variation. In this experiment, the time of rapid changes in temperature was ahead in the inland slope rather than the forceland slope. It was corresponding to the levee failure sequence of first inland slope failure and then the forceland slope failure.

Strain Sensitivity of Fiber Optic Bragg Grating Sensor (광섬유 브래그 격자 센서의 변형률 감지도)

  • Kwon, Il-Bum;Choi, Man-Yong;Kim, Min-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • Recently, there has been considerable interest in the development of fiber-optic sensors based on fiber Bragg gratings (FBGs), which can be made into Ge-doped fiber's core by UV phase mask or holographic methods. A good sensitivity and small size of this sensor make it an ideal candidate for distributed sensing in smart structures or other structural monitoring applications. In this study, fiber optic Bragg grating sensor, which could be applied to measure the absolute strains, was constructed and the strain sensitivity of this sensor was investigated in order to apply to the structural health monitoring. Fiber Fabry-Perot (FFP) filter has been used to detect the optical signals instead of optical spectrum analyzer. It has been convenient to determine the structural strains from the output signal of FBGs. The fiber optic Bragg grating sensor was attached on the aluminum beam near the electrical strain gage to measure the same strain. The relationship between strain and fiber signal was linearly fitted. The strain sensitivity of the fiber optic Bragg grating sensor was determined as $l.57{\mu}{\varepsilon}/{\mu}sec$ from the aluminum beam test.

  • PDF

Fiber optic sensor technology for sensing/controlling vibration and deformation of lightweight structures (경량 구조물의 진통 및 변형 감지/제어를 위한 광섬유 센서 기술)

  • Han, Jae-Hung;Kang, Lae-Hyong;Mueller, Uwe C.;Rapp, Stephan;Baier, Horst
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-163
    • /
    • 2006
  • Vibration and deformation sensing control of lightweight structures using optical fiber sensor technology is introduced in this presentation. This paper shows several examples of vibration control and deformation estimation for structures using these optical fiber sensor systems. Among various optical fiber sensors, in this paper, two types of optical fiber sensors, Fabry-Perot Interferometer(EFPI) and Fiber Bragg Grating(FBG) sensors, are mainly dealt with. Fiber optic sensors show many advantages over conventional strain gages for the measurement of vibration and deformation of lightweight structures.

  • PDF

Fabrication and Performance Evaluation of a Scintillating Film-based Gamma Imaging Detector to Measure Gamma-ray Distribution (감마선 분포 측정을 위한 섬광필름 기반의 감마 영상 검출기 제작 및 성능평가)

  • Shin, Sang Hun;Yoo, Wook Jae;Jang, Kyoung Won;Cho, Seunghyun;Lee, Bongsoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.202-207
    • /
    • 2015
  • As a feasibility study on development of a gamma imaging probe, we developed a scintillating film-based gamma imaging detector that can obtain scintillation images with information of gamma-ray distribution. The scintillating film-based gamma imaging detector was composed of a sensing probe, an image intensifier, and a beam profiler. To detect and transmit scintillation image, the sensing probe was fabricated by coupling a scintillating film, a fiber-optic image conduit, and a fiber-optic taper, consecutively. First, the optical images of USAF 1951 resolution target were obtained and then, modulation transfer function values were calculated to test the image quality of the sensing probe. Second, we measured the scintillation images according to the activity of the 137Cs and the distance between the surface of 137Cs and the distal-end of sensing probe. Finally, the intensities of scintillating light as functions of the activity and the distance were evaluated from the region of interest in the scintillation image. From the results of this study, it is expected that a fiber-optic gamma imaging detector can be developed to detect gamma-rays emitted from radiopharmaceuticals during radioimmunoguided surgery.

Structural strain measurement using a 3*3 passive demodulated fiber optic michelson interferometric sensor (3*3 수동변조 되풀이 광섬유 마이켈슨 간섭센서에 의한 구조물의 변형률 측정)

  • Gwon, Il-Beom;Gang, Hyeon-Gyu;Kim, Cheon-Gon;Hong, Chang-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • The measuring method of structural strain by a 3*3 passive-demodulated fiber optic interferometric sensor was developed to implement the real-time monitoring of structural status. A 3*3 fiber optic Michelson interferometric sensor was constructed to sense the value and the direction of structural strain. This sensor was applied on the cantilevered aluminum beam to experiment the sensing of the structural deformation. The digital signal processing was programmed by LabVIEW to determine the structural strain from the fiber optic signals. This program was verified by various simulated fiber optic signals. Finally, the structural was well determined by this developed program from real fiber optic signals.

Design of Fiber Optic Gyroscope for Sensing High Rotation (고속회전 감지 광섬유자이로 설계)

  • Do, Jae-Chul;Chong, Kyoung-Ho;Jo, Min-Sik;Song, Ki-Won;Moon, Hong-Key
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.551-555
    • /
    • 2009
  • We studied the design of fiber optic gyroscope that enables to sense high rotation by extending the limit of rotation sensibility of fiber optic interferometer. Based on the digital serrodyne modulation technique, the signal processing of fiber optic gyroscope was designed and the prototype fiber optic gyroscope showed the high rotation sensibility up to ${\pm}3000[deg/sec]$ and scale factor performance of about 150[ppm] by the experiments. Accordingly, we confirmed that the design of fiber optic gyroscope was valid for high rotation.

A Study on the Security of Infrastructure using fiber Optic Scattering Sensors (광섬유 산란형 센서를 이용한 사회기반시설물의 보안에 관한 연구)

  • Kwon, Il-Bum;Yoon, Dong-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.499-507
    • /
    • 2004
  • We have studied tile detection techniques, which can determine the location and the weight of an intruder into infrastructure, by using fiber-optic ROTDR (Rayleigh optical time domain reflectometry) sensor and fiber-optic BOTDA (Brillouin Optical time domain analysis) sensor, which can use an optical fiber longer than that of ROTDR sensor Fiber-optic sensing plates of ROTDR sensor, which arc buried in sand, were prepared to respond the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The constructed ROTDR could be used up to 10km at the pulse width of 30ns. The location error was less than 2 m and the weight could be detected as 4 grades, such as 20kgf, 40kgf, 60kgf and 80kgf. Also, fiber optic BOTDA sensor was developed to be able to detect intrusion effect through an optical fiber of tells of kilometers longer than ROTDR sensor. fiber-optic BOTDA sensor was constructed with 1 laser diode and 2 electro-optic modulators. The intrusion detection experiment was peformed by the strain inducing set-up installed on an optical table to simulate all intrusion effect. In the result of this experiment, the intrusion effort was well detected as the distance resolution of 3m through the fiber length of about 4.81km during 1.5 seconds.

Study on Optical Characteristics of pH Indicators in the Immobilized Film for Fiber-Optic pH Sensor (광학적 pH 센서를 위한 지시염료가 고정된 필름의 광학적 특성 연구)

  • Kim, Beom Kyu;Park, Byung Gi
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.414-419
    • /
    • 2017
  • The optical characteristics of cresol red, phenol red, and neutral red immobilized in the thin film were investigated with absorbance measurement in order to find a sensing part of a fiber-optic pH sensor. Sol-Gel method with tetramethyl orthosilicate as a precursor was used to immobilize the pH indicators in the thin film. The absorbance spectra were measured when pH indicators were immobilized in the film and were dissolved in the buffer solution. Experimental results showed that the absorbance spectra could be changed when the pH indicator is immobilized in the thin film. As compared with other pH indicators, the neutral red exhibited similar absorbance spectra regardless of physical conditions and was sensitive over whole pH range between 4 and 11. In addition, the absorbance ratio of base peak to acid peak tended to increase in proportion to the increase in pH. Experimental results indicate that the neutral red is a good pH indicator for fabrication of a sensing part of the fiber-optic pH sensor.

Underdetermined Blind Source Separation from Time-delayed Mixtures Based on Prior Information Exploitation

  • Zhang, Liangjun;Yang, Jie;Guo, Zhiqiang;Zhou, Yanwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2179-2188
    • /
    • 2015
  • Recently, many researches have been done to solve the challenging problem of Blind Source Separation (BSS) problems in the underdetermined cases, and the “Two-step” method is widely used, which estimates the mixing matrix first and then extracts the sources. To estimate the mixing matrix, conventional algorithms such as Single-Source-Points (SSPs) detection only exploits the sparsity of original signals. This paper proposes a new underdetermined mixing matrix estimation method for time-delayed mixtures based on the receiver prior exploitation. The prior information is extracted from the specific structure of the complex-valued mixing matrix, which is used to derive a special criterion to determine the SSPs. Moreover, after selecting the SSPs, Agglomerative Hierarchical Clustering (AHC) is used to automaticly cluster, suppress, and estimate all the elements of mixing matrix. Finally, a convex-model based subspace method is applied for signal separation. Simulation results show that the proposed algorithm can estimate the mixing matrix and extract the original source signals with higher accuracy especially in low SNR environments, and does not need the number of sources before hand, which is more reliable in the real non-cooperative environment.