• Title/Summary/Keyword: fiber number

Search Result 1,237, Processing Time 0.029 seconds

Effects of Muscle Mass and Fiber Number of Longissimus dorsi Muscle on Post-mortem Metabolic Rate and Pork Quality

  • Ryu, Youn-Chul;Choi, Young-Min;Kim, Byoung-Chul
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.667-671
    • /
    • 2005
  • The aim of this study is to investigate the effects of the muscle mass and fiber number on post-mortem metabolic rates and pork quality. Carcass traits, muscle fiber characteristics, and type of fiber composition were evaluated using a sample of 200 cross-bred pigs. The muscle mass was divided into two groups according to carcass weight and loin-eye area measurements (heavy or light). In addition, the muscle histological characteristics were divided into two groups according to the muscle fiber density and total number of muscle fibers (high or low). All the carcass traits were significantly different in the muscle mass groups. Increasing weight significantly affected the cross-sectional area (CSA) of all fibers. The low group, which had a low muscle fiber number indicating a larger CSA of fibers, and especially the heavy-low group had the highest CSA levels of fibers. The fiber number percentage and the area percentage were significantly different in the groups categorized by fiber number. The heavy-high group indicated a normal rate of pH decline and the R-value. In addition, pigs with a heavy muscle mass and high muscle fiber number indicated normal drip loss, lightness, and protein denaturation. The present results suggest that increasing the total muscle fiber number has a beneficial effect on increasing the muscle mass without deteriorating the meat quality.

Estimation of Correlation Coefficients between Histological Parameters and Carcass Traits of Pig Longissimus Dorsi Muscle

  • Ryu, Y.C.;Rhee, M.S.;Kim, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.428-433
    • /
    • 2004
  • The aim of this study was to investigate the histochemical parameters of muscle fibers, and to estimate the correlation between these histological parameters and carcass traits in pigs. A total of 230 crossbred Duroc$\times$(Yorkshire$\times$Landrace) pigs (149 gilts and 81 castrated male pigs) was evaluated. Carcass traits (carcass weight, backfat thickness, and loin eye area), muscle fiber size (crosssectional area, diameter, and perimeter), muscle fiber number (density of fibers/$mm^2$ and total number of fibers), and fiber type composition (percentages of myofibers and relative areas of each fiber type) were evaluated. Mean cross-sectional area (CSA) and type IIB fiber CSA were positively correlated to carcass weight, backfat thickness and loin eye area. Mean fiber CSA was mostly related to type IIB CSA (r=0.98) as a result of the high percentage of type IIB fibers in the longissimus muscle. Correlations between fiber diameters and perimeters were also high, and showed similar results with CSA. Mean fiber density was negatively correlated to carcass weight (r=-0.24), backfat thickness (r=-0.18) and loin eye area (r=-0.27). To the contrary, total fiber number was positively correlated with carcass weight (r=0.27) and loin eye area (r=0.53). Carcass weight and loin eyZe area were not significantly related to muscle fiber composition. For backfat thickness, there was an opposition between type IIA percentage, which was positively related and type IIB percentage, which was negatively related. Fiber type composition of type I and IIA fibers were negatively correlated to that of type IIB fibers (r=-0.67 to -0.74). In the present study, carcass weight and loin eye area were positively correlated to CSA and negatively correlated to fiber density. But, these relationships were generally low. The fiber density was strongly affected by muscle fiber size and the total fiber number was affected either by CSA of muscle fiber and loin eye area. Fiber type composition was much more related to their numerical abundance than their CSA.

Flocculation and Formation - the Action and Effect

  • Lee, Sang-Gil;Lee, Hak-Lae;Youn, Hye-Jung;Jeong, Young-Bin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.427-431
    • /
    • 2006
  • Formation which is one of the most fundamental characteristic of paper quality is affected by a number of variables. Fiber flocculation in the headbox has been recognized as the most important variable influencing formation. Consistency and crowding number of headbox stock are known to represent the flocculation potential of stocks. The effects of consistency and crowding number on paper formation were studied by measuring the flocculation of fiber suspensions. Increasing consistency increased the degree of fiber flocculation. Especially the consistency of long fiber fraction was the most crucial factor of flocculation. Tensile strength of handsheets was furnish dependent rather than flocculation dependent. Crowding number of a furnish can be used for the characterization of stock flocculation.

  • PDF

Fiber Bridging Model Considering Probability Density Function of Fiber Inclined Angle in Engineered Cementitious Composites (보강 섬유의 배향각에 대한 확률밀도함수를 고려한 ECC내의 섬유 가교 모델)

  • Kang, Cheol-Ho;Lee, Bang-Yeun;Park, Seung-Bum;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.587-596
    • /
    • 2009
  • The fiber bridging model is the crucial factor to predict or analyze the tensile behavior of fiber reinforced cementitious composites. This paper presents the fiber bridging constitutive law considering the distribution of fiber inclined angle and the number of fibers in engineered cementitious composites. The distribution of fiber inclined angle and the number of fibers are measured and analyzed by the image processing technique. The fiber distribution are considerably different from those obtained by assuming two- or three-dimensional random distributions for the fiber inclined angle. The simulation of the uniaxial tension behavior was performed considering the distribution of fiber inclined angle and number of fibers measured by the sectional image analysis. The simulation results exhibit multiple cracking and strain hardening behavior that correspond well with test results.

Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers (비틀림 강섬유의 비틀림 횟수가 고성능 섬유보강 시멘트 복합재료의 인장거동에 미치는 영향)

  • Kim, Dong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.575-583
    • /
    • 2010
  • This research investigated the influence of the number of twist on single fiber pullout behavior of Twisted steel (T-) fiber and tensile behavior of high performance cementitious composites reinforced with the (T-) fibers (HPFRCC). Micromechanical pullout model for T- fibers has been applied to analytically investigate the influence of various fiber parameters including the number of twist on single fiber pullout behavior; and, to optimize the number of twist to generate larger pullout energy during fiber pullout without fiber breakage. In addition, an experimental program including single fiber pullout and tensile tests has been performed to investigate the influence of twist ratio experimentally. Two types of T- fiber with different twisted ratios, T(L)- fiber (6ribs/30 mm) and T(H)- fiber (18ribs/30 mm), were tested. T(L)- fiber produced higher equivalent bond strength (larger pullout energy) although T(H)- fiber produced higher pullout stress during pullout since T(H)- fiber showed fiber breakage during pullout. Tensile test results confirmed that T(L)- fiber in high strength mortar generates better tensile performance of HPFRCC, e.g., load carrying capacity, strain capacity and multiple micro-cracking behavior.

The Effect of Consistency and Crowding Number on the Formation of Paper Made of Different Pulp Stocks

  • Lee, Hak-Lae;Youn, Hye-Jung;Lee, Sang-Gil;Jeong, Young-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • Formation which is one of the most fundamental characteristic of paper quality is affected by a number of variables. Fiber flocculation in the headbox has been recognized as the most important variable influencing formation. Consistency and crowding number of head box stock are known to represent the flocculation potential of stocks. The effects of consistency and crowding number on paper formation were studied by measuring the flocculation of fiber suspensions. Increasing consistency increased the degree of fiber flocculation. Especially the consistency of long fiber fraction was the most crucial factor of flocculation. Tensile strength of handsheets was furnish dependent rather than flocculation dependent. Crowding number of a furnish can be used for the characterization of stock flocculation.

Paper Strength Mechanism Depending on Mixing Ratio of Softwood and Hardwood Fibers (침엽수, 활엽수 펄프섬유의 혼합비에 따른 종이의 강도발현 기작 구명)

  • 이진호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • Paper consists of fiber network and paper properties were highly affected by fiber characteristics. Many researchers have tried to relate fiber and paper properties. Softwood and hardwood fiber's are quite different in their properties. Generally, softwood fiber's are longer and more flexible than hardwood fibers. At present, many paper mills make mixed paper with softwood and hardwood fibers except for special grade. During fracture some fiber's are broken and others are pulled out. In this paper, the number of broken and pulled out fiber's during fracture is analyzed depending on the mixing ratio of softwood and hardwood fiber's. Fiber length, curl, kink, coarseness, WRV and formation index were measured. Double-edged strength samples were prepared to observe the number of broken and pulled out fiber's. Mixed paper strength was decreased with increasing hardwood fibers ratio. During fracture, softwood fiber's were more likely broken and hardwood fibers were more likely pulled out. The strength of paper which consists of softwood fibers was determined by fiber's broken strength and that of hardwood fibers by fiber's debonding strength. Paper strength was changed depending on the fiber's bonding capability. If the fiber is longer and more flexible, the fiber network becomes stronger and stiffer.

  • PDF

Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites using Electro-Micromechanical Techniques and Nondestructive Evaluations

  • Park, Joung-Man;Lee, Sang-Il
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • Interfacial adhesion and nondestructive behavior of electrodeposited (ED) carbon fiber rein-forced composites were evaluated using electro-micromechanical techniques and acoustic emission (AE). The interfacial shear strength (IFSS) of the ED carbon fiber/epoxy composites was higher than that of the untreated fiber. This might be expected because of the possibility of chemical or hydrogen bonding in an electrically adsorbed polymeric interlayer. The logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when fiber fracture occurred, whereas that of the ED composite increased relatively gradually to infinity. This behavior may arise from the retarded fracture time due to enhanced IFSS. In single- and ten-carbon fiber composites, the number of AE signals coming from interlayer failure of the ED carbon fiber composite was much larger than that of the untreated composite. As the number of the each first fiber fractures increased in the ten-carbon fiber composite, the electrical resistivity increased stepwise, and the slope of the logarithmic electrical resistance increased.

  • PDF

Effects of Kneading Concentration on Characteristics of HwBKP Fibers (니딩 처리 시 지료농도에 따른 활엽수표백크라프트펄프의 섬유특성 변화)

  • Seo, Ji-Hye;Choi, Kyoung-Hwa;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • In this study, effects of kneading concentration on characteristics of hardwood bleached kraft pulp (HwBKP) fibers were elucidated. A laboratory two-shaft kneader was utilized for kneading. Kneading concentration was varied in the range of 15-30% (w/w) and the number of kneading treatment was adjusted between 0 and 6 passes. It was found that kneading concentration influenced fiber characteristics. At 15% of pulp concentration, fiber length slightly increased with increasing the number of kneading passes, while other morphological properties such as fiber width and curl decreased: fiber straightening occurred. In addition, the increase in WRV and the decrease in CSF were the largest at 15% kneading concentration, meanings that fibrillation mainly occurred. In contrast, at higher kneading concentration exceeding 20%, fiber deformation like curl was mainly occurred. Also, at kneading concentration of 20% and 30%, fiber length decreased with the number of kneading passes while other morphological properties such as fiber width, and WRV increased. Severe fiber entanglement was found at 30% kneading, which shall be removed during papermaking.

Interfacial and Nondestructive Evaluation of Single Carbon Fiber/Epoxy Composites by Fiber Fracture Source Location using Acoustic Emission (Acoustic Emission 의 섬유파단 Source Location을 이용한 Carbon Fiber/Epoxy Composites의 계면특성 및 비파괴적 평가)

  • Kong, Jin-Woo;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.116-120
    • /
    • 2001
  • Fiber fracture is one of the dominant failure phenomena to determine total mechanical properties in composites. Fiber fracture locations were measured by optical microscopic method and acoustic emission (AE) as functions of matrix toughness and surface treatment by the electrodeposition (ED), and then two methods were compared. Two AE sensors were attached on the epoxy specimen and fiber fracture signals were detected with elapsed time. The interfacial shear stress (IFSS) was measured using tensile fragmentation test and AE system. In ED-treated case, the number of the fiber fracture measured by an optical method and AE was more than that of the untreated case. The signal number measured by AE were rather smaller than the number of fragments measured by optical method, since some fiber fracture signals were lost while AE detection. However, one-to-one correspondence between the x-position location by AE and real break positions by optical method was generally established well. The fiber break source location using AE can be a valuable method to measure IFSS for semi- or nontransparent matrix composites nondestructively (NDT).

  • PDF