• Title/Summary/Keyword: fiber mold

Search Result 220, Processing Time 0.021 seconds

A Study on the Control Strategy to Minimize Voids in Resin Transfer Mold Filling Process (RTM 공정에서 기공 최소화를 위한 공정 제어에 관한 연구)

  • Lee Doh Hoon;Jeon Young Jae;Lee Woo Il;Um Moo Kwang;Byun Joon Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.292-296
    • /
    • 2004
  • In case of Resin Transfer Molding(RTM) process, 'race-track' effects and non-uniform fiber volume fraction may cause undesirable resin flow pattern and thus result in dry spots, which affect the mechanical properties of the finished parts. In this study, a real time RTM control strategy to prevent these unfavorable effects is proposed. The control strategy consists of two 'stages' depending on the extent the resin front has reached. Through numerical simulations and experiments, the validity of the proposed scheme is demonstrated. The results show that the proposed scheme is effective in reducing the void formation during RTM mold filling.

  • PDF

A study on the forming analysis of double-dome model considering CFRP prepreg laminate condition and coefficient of friction (CFRP Prepreg 적층조건과 금형 마찰계수를 고려한 Double-dome 형상 성형해석 연구)

  • Kim, Young-Ju;Lee, San-Ho;Kim, Heung-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.12-17
    • /
    • 2016
  • Recently, lightweight material is attracting attention as a solution to the problem of fuel efficiency and increasing the need for development. CFRP has been attracting attention as lightweight materials for automobile because it has a high specific stiffness and specific strength compared to steel material. CFRP have a wide range of mechanical properties depending on the laminate condition. In this paper, study on the forming analysis of double-dome model was performed considering CFRP prepreg laminate condition and coefficient of friction. After forming analysis, the result has compared with wrinkling area and vertical strain of fiber to the laminated condition. And then compared with inflow of blank to the laminate condition. Through this paper, we propose the forming analysis methods of CFRP material.

Physicochemical Properties of Freeze Dried Ginseng from the Fresh Ginseng Stored at Low Temperature (저온저장 후 냉동건조한 인삼의 이화학적 특성)

  • 장진규;심기환
    • Journal of Ginseng Research
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 1994
  • Fresh ginseng of same grade was stored under the 4$\pm$1$^{\circ}C$ and 87~92% RH for 10 weeks. During the storage, an aliquot amount of the ginseng was drawn, freeze dried and chemical constituents and physicochemical parameters were measured. After 10 weeks of storage drying rate and shrinkage of ginseng were 1520% and 9.04%, respectively, mold growth was seen at week 5 and observed for 51.2% of the ginseng week 10. Amylase activity level was elevated at the early stage of storage and decreased to 5% of initial value at week 5. At week 5, the elevated amylase activity was inconcomitant with the appearance of the mold growth. Crude protein contents were increased and decreased, respectively 5 week post storage. No significant changes in crude fat, crude fiber, ash, total sugar, n-butanol extract and ginsenoside were observed. The content of water-extractable substance showed maximum at week 7 to 8. The value of pH was slightly elevated and reducing sugar was increased during the storage. Key words Ginseng storage, physicochemical properties, drying rate, shrinkage, amylase activity.

  • PDF

Development of a cavity pressure measuring device and estimation of viscosity functions of various polymer composites (사출성형 금형 캐비티 내압 측정장치 개발 및 이를 이용한 새로운 복합재료의 점도 측정)

  • Kim, Yong-Hyeon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.877-887
    • /
    • 2015
  • We have proposed a new method for estimating the viscosity of the composite. In this paper, we have developed a device for measuring the injection mold cavity pressure. This makes it possible to verify the accuracy of the viscosity in CAE D/B in real time by measuring the melt pressure in the mold, and comparing this with the simulated pressure from the CAE analysis. Materials used in this study is a PP(Polypropylene), PP/LGF30%(Polypropylene/long glass fiber 50% composite) and PA66/LGF50%(Polyamide 6,6/long glass fiber 50% composite). The viscosity data for PP and PP long fiber composite have already been built, but the one for PA66 long-fiber composite does not exist because it is a newly developed material. Thus we obtained the viscosity curve of PA66/LGF50% by this system. Then, the viscosity curves from conventional viscometer were also compared with the viscosity obtained by the our method. And, we proved the accuracy of the CAE data of PP. In case of PP/LGF50% which is highly viscous and complex material, we improved the existing CAE data.because there was a difference between the measuring data and the CAE data.

A study on the fiber orientation and mechanical characteristics of injection molded fiber-reinforced plastic for the rigidity improvement of automotive parts (자동차 부품의 강성 보강을 위한 섬유강화 플라스틱 사출성형품의 섬유 배향 및 기계적 특성에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Seok-Kwan Hong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.24-33
    • /
    • 2022
  • Fiber-reinforced plastics(FRPs) have excellent specific stiffness and strength, so they are usually used as automotive parts that require high rigidity and lightweight instead of metal. However, it is difficult to predict the mechanical properties of injection molded parts due to the fiber orientation and breakage of FRPs. In this paper, the fiber orientation characteristics and mechanical properties of injection molded specimens were evaluated in order to fabricate automotive transmission side covers with FRPs and design a rib structure for improvement of their rigidity. The test molds were designed and manufactured to confirm the fiber orientation characteristics of each position of the injection molded standard plate-shaped specimens, and the tensile properties of the specimens were evaluated according to the injection molding conditions and directions of specimens. A gusset-rib structure was designed to improve the additional structural rigidity of the target products, and a proper rib structure was selected through the flexural tests of the rib-structured specimens. Based on the evaluation of fiber orientation and mechanical characteristics, the optimization analyses of gate location were performed to minimize the warpage of target products. Also, the deformation analyses against the internal pressure of target product were performed to confirm the rigidity improvement by gusset-rib structure. As a result, it could be confirmed that the deformation was reduced by 27~37% compared to the previous model, when the gusset-rib structure was applied to the joining part of the target products.

Mechanical Property of Cabon Nanofiber/Polypropylene Composites by Melt-mixing Process (압출공정에 의한 탄소나노섬유/폴리프로필렌 복합재료의 기계적 특성)

  • Byeon, Jun-Hyeong;Lee, Sang-Gwan;Eom, Mun-Gwan;Min, Gyeong-Sik;Song, Jae-Eun;Lee, Chang-Hun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.125-128
    • /
    • 2005
  • The dispersion of carbon nanofiber (CNF) was carried out by solution blending, mechanical mixing, and sonication. CNFs at levels of 5-50% fiber weight content were mixed with polypropylene (PP) powder, and then were melt-mixed using a twin-screw extruder. For the further alignment of fibers, extruded rods were stacked uni-directionally in the mold cavity for the compression molding. For the evaluation of mechanical properties of nanocomposites, tension, in-plane shear, and flexural tests were conducted. CNF/PP composites clearly showed reinforcing effect in the longitudinal direction. The tensile modulus and strength have improved by 100% and 40%, respectively for 50 % fiber weight content, and the flexural modulus and strength have increased by 120% and 25%, respectively for the same fiber weight content. The shear modulus showed 65% increase, but the strength dropped sharply by 40%. However, the property enhancement was not significant due to the poor adhesion between fiber and matrix. In the transverse direction, the tensile, flexural, and shear strength decreased as more fibers were added.

  • PDF

A Study on the Molding Process of Carbon Fiber Automotive Wheels by Taguchi method (다구찌법을 이용한 자동차용 카본 휠 성형공정에 관한 연구)

  • Ryu, Mi-Ra;Jeon, Hwan-Young;Park, Chul-Hyun;Bae, Hui-Eun;Bae, Hyo-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.30-37
    • /
    • 2017
  • Weight reduction of the wheel is exerts a great influence on the running performance of the vehicle, a lot of research for a lightweight aluminum wheels progress. In order to select the molding conditions through the experiment on the carbon fiber prepreg molding process based on the design of the mold for manufacturing the carbon wheel using the carbon fiber pressure forming method, the carbon wheel molding process using the Taguchi method And to produce prototypes based on the results.

Estimation of viscosity of by comparing the simulated pressure profile from CAE analysis with the Long Fiber Thermoplastic(LFT) measuring cavity pressure (Long Fiber Thermoplastic(LFT) 사출성형 공정에서 캐비티 내 압력 측정 및 CAE해석을 활용한 점도 추정)

  • Lim, Seung-Hyun;Jeon, Kang-Il;Son, Young-Gon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1982-1987
    • /
    • 2011
  • In this study, we proposed a new method that can estimate viscosity curves of unknown samples or high viscous resins like LFT(Long Fiber Thermoplastics). First, we built the system that could detect the pressure of melt during filling the cavity in a mold. It consists of both pressure sensors which are installed in a mold and the Kit which can convert analog signal to digital signal. The kit measures the melt pressure in mold cavity. We could also simulate the cavity pressure during filling process with commercialized CAE softwares(ex, Moldflow). If the viscosity data in CAE Database were correct, the simulated pressure profile coincided with the measured one. According to our proposed algorithm, we obtained correct viscosity data by iterating the process of comparing the simulated profile with the measured one until both coincided each other. In order to verify this algorithm, we selected well-defined PP resin and concluded that the experimental profile comply with the CAE profile. We could also estimate the optimized viscosity curves for PP-LFT by applying our method.

Comparison of Physical Properties of Hanjis Made by Different Sheet Forming Processes (초지법에 따른 한지의 물성비교)

  • 최태호;조남석;최인호;정택상
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.21-27
    • /
    • 2001
  • Korean traditional paper (Hanji) making technology has adopted two kinds of sheet forming processes, which called "Oebal-choji": and "Ssangbal-choji". The sheet forming process of Oebal-choji is an original method developed in Korea. At first, paper stock is dipped onto the mold and flow away in the forward direction. Then, paper stock is scooped again and rhythmically rocked from side to side, this work is repeated several times. Through this operation the fibers intertwine and paper layers are formed. Ssangbal-choji is almost same as the Nagashizuki, which used in Japan. In this method, paper stock is scooped onto the mold and rhythmically rocked backwards and forwards several times, the water drains slowly through the bamboo screen and then sheet is formed. Tamezuki method is used in Japan and China. This is a method in which the mold is dipped into the paper stock once and left to drain. In the Ssangbal-choji and Nagashizuki methods, the most of excess solution is cast out while in the Tamezuki all of it is allowed to drain through the mold. This study was carried out to investigate the physical properties of the Hanjis that were made by Oebal-choji, Ssangbal-choji, Nagashizuki, and Tamezuki sheet forming processes. The results were follows; Physical properties of the Oebal-choji Hanji were better than those of Ssangbal-choji, Nagashizuki, and Tamezuki. Oebal-choji Hanji made little difference of paper strength between MD and CD, but Ssangbal-chjo and Nagashizuki Hanjis made wide difference. And there are no difference of paper strength between MD and CD on the Tamezuki Hanji. On the confocal laser scanning microscopy (CLSM) observation of the Hanjis, Oebal-choji made well crossed fiber orientation than those of other forming processes.r forming processes.

  • PDF

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 2. 결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • Injection molding process is a popular polymer processing involving plasticizing and enforcing the material flow into the mold. A polymer material shrinks according to temperature variations during the shaping process, and subsequently molding shrinkage developed. Developed deflections or warpages after molding process in part are caused by residual stress relaxation contained in the part. Adding inorganic materials or fibers such as glass and carbon to control shrinkage and enhance warpage resistance are common. In this study, warpages according to part design have been investigated through experiment. Warpages for molding conditions and mold designs such as gate locations were measured. Warpages along flow direction and perpendicular to the flow direction were also measured. Warpages near gate and far from gate were compared. Glass fiber reinforced crystalline polymers, PP and PA66 have been used in this experiment. Glass fiber reinforced crystalline polymers showed large warpage compared with glass reinforced amorphous polymers. Warpages in crystalline polymers were less influenced by molding conditions compared with amorphous polymers, however warpages of crystalline polymers significantly depend on part design.