• Title/Summary/Keyword: fiber mixed concrete

Search Result 167, Processing Time 0.029 seconds

A Study on the Residual Mechanical Properties of Fiber Mixed Concrete with High Temperature and Load (고온 및 하중에 따른 섬유혼입 콘크리트의 잔존역학적 특성에 관한 연구)

  • Yoon, Dae-Ki;Kim, Gyu-Yong;Choe, Gyeong-Choel;Lee, Tae-Gyu;Koo, Kyung-Mo;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.119-120
    • /
    • 2011
  • Recently, the effects of high temperature and fiber content on the residual mechnical properties of high-strength concrete were experimentally investigated. In this paper, residual mechanical properties of concrete with water to cement (w/c) ratios of 55%, 42% and 32% exposed to high temperature are compared with those obtained in fiber reinforced concretes of similar characteristics with the ranging of 0,05% to 0,20% polypropylene (PP) fibers by volume of concrete, and considered factors include pre-load levels (20% and 40% of the maximum load at room temperature). Outbreak time and water contents were tested and were determined the compressive strength. In the result, it is showed that to prevent the explosive spalling of 50MPa grade concretes exposed to high temperature need more than 0.05Vol.% PP fibers. Also, the cross-sectional area of PP fiber can influence on the residual mechanical properties and the spalling tendency of fiber reinforced concrete exposed to high temperature. Especially, the external loading increases not only the residual mechanical properties of concrete but also the risk of spalling and the brittle tendency.

  • PDF

Strain Properties on Rear Side of Fiber Reinforced Concrete and Cement Composite by Impact Load (충격하중을 받는 섬유보강 콘크리트 및 시멘트 복합체의 배면변형특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Son, Min-Jae;Kim, Gyeong-Tae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.158-159
    • /
    • 2017
  • In this study, it evaluate the strain properties of fiber reinforced concrete and fiber reinforced cement composite. The types of fiber are Hooked steel fiber and it was mixed 0.5, 1.0 vol.% in concrete and 1.0, 2.0 vol.% in cement composites. The impact test was conducted by using a projectile (diameter: 25mm, velocity: 170m/s) and strain properties on the rear side of each specimen was evaluated by strain gage. After the impact test, fracture grade, fracture depth was evaluated.

  • PDF

Spalling Reduction Methods of Ultra High-Strength Reinforced Concrete Columns (초고강도 콘크리트 기둥의 폭렬저감방안에 관한 실험적 연구)

  • Shin, Sung-Woo;Yoo, Suk-Hyeong;Kim, In-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.171-178
    • /
    • 2006
  • It was presented that the spalling of high strength concrete exposed to high temperature could be reduced by using polypropylene fiber. However, as the concrete strength increase, the demanded quantity of PP fiber increase and this results in the loss of workability of ultra high strength concrete. The silica fume which is essentially mixed in ultra high strength concrete decrease the permeability of concrete, and this will increase the degree of spalling. In this study the effect of silica fume on the spalling of ultra high strength concrete and the fire resisting efficiency of PP fiber and poly vinyl alchol, instead of PP fiber, for the security of workability were experimentally examined.

An Experimental Study on the Impact Resistance of Concrete using Coal Ash and Fiber New Materials (석탄재 및 섬유신소재를 혼입한 콘크리트의 충격저항성에 관한 실험적 연구)

  • Park, Sung-Hyen;Park, Seong-Bum;Jang, Young-Il;Lee, Byung-Jae;Jun, Heum-Jin;Cho, Kwang-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.431-432
    • /
    • 2009
  • This study was performed to verify the impact resistance of concrete using coal ash and fiber new materials. As the results of study, the impact resistance of concrete decreased as the mixing ratio of coal ash increased. When the fiber new materials(GF, HPSF) were mixed to the concrete, its resistance was increased.

  • PDF

Performance Evaluation of Fire Resistance of High Strength Concrete by Incorporation of Combined Fiber (복합섬유 혼입에 따른 고강도콘크리트의 내화 성능 평가)

  • Shin, Jae-Kyung;Park, Jong-Ho;Jeong, Yong;Moon, Hyung-Jae;Kim, Jeong-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.423-424
    • /
    • 2010
  • This study purpose is to develop the high fireproof concrete which applied method of combined fiber mixed with polymer powder and organic fiber which can satisfy flowability and the fire resistance properties for construction of the super tall building. According to the results, in case of polymix it is effective to the reduction of internal temperature rise and spalling resistance so it as fire resistance that is similar to existing fiber cocktail.

  • PDF

Shrinkage Properties of High Strength Concrete according to Poly mix Fiber and Moisture Evaporation Condition (수분증발조건 및 폴리믹스섬유 혼입에 따른 고강도콘크리트의 수축특성)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Nam, Jeong-Soo;Kim, Hong-Seop;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.289-290
    • /
    • 2012
  • In this study, it was evaluated about shrinkage properties of high strength concrete according to poly mix fiber and moisture evaporation condition. As a results, When concrete was mixed with poly mix fiber of spalling control, it reduced effect of shrinkage independent of the evaporation conditions of unsealed and sealed.

  • PDF

Evaluation on Mechanical Properties of PP Fiber Ultra High Strength Concrete at Elevated Temperatures (PP섬유 혼입에 따른 초고강도 콘크리트의 고온역학적특성 평가)

  • Bang, Deog-Yun;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong;Hwang, Eui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.53-54
    • /
    • 2016
  • In this study, the effect of high temperature on the compressive strength and elastic modulus of ultra high strength concrete with PP fiber were experimentally investigated. As the result, the compressive strength and elastic modulus of ultra high strength concrete were irrespectively evaluated mixed ratio of PP fiber at high temperature.

  • PDF

A Study on Fire Resistance and Spalling of HPC Beam with Fiber-Cocktail in ISO Fire under Loading Condition (표준화재 재하조건하에서 Fiber Cocktail을 혼입한 고강도 콘크리트 보의 폭렬특성 및 내화성능에 관한 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.126-134
    • /
    • 2009
  • In an attempt to control the spalling in high strength concrete, spalling reducer was mixed to identify the effect and thermal characteristics of concrete beam member at high temperature. The member was manufactured in such as way of adding 40~60MPa of high strength concrete into spalling reducer, and then fire resistance performance were monitored under the ISO standard fire load condition in accordance with KS F 2257. As a result of test, fore rate performance of 40MPa beam without spalling reducer was 180minutes, 50MPa was 174minutes and 60MPa was 152minutes, indicating that 50MPa and 60MPa beam appeared 6~28minutes short to become a 3-hour rate. However, 50 and 60MPa beam mixed with spalling reducer appeared to have satisfied the requirements for 180minutes. A spalling was occurred in surface of 50 and 60MPa beam mixed without spalling reducer, while no spalling or surface failure was occurred with 50 and 60MPa beam mixed with spalling reducer. Thus polypropylene fiber mixed with the concrete proved to be effective, but viewing that the surface of 60MPa was peeled off partially, the steel fiber mixed appeared not to be effective for the beam more than 60MPa.

Seismic performance evaluation of fiber-reinforced prestressed concrete containments subject to earthquake ground motions

  • Xiaolan Pan;Ye Sun;Zhi Zheng;Yuchen Zhai;Lianpeng Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1638-1653
    • /
    • 2024
  • Given the unpredictability of the occurrence of the earthquake and other potential disasters into consideration, the nuclear power plant may be confronted with beyond design-basis earthquake load in the future. The containment structure may be severely damaged under such severe earthquake loading, increasing the risk of containment concrete cracking and potential radioactive materials leaking. Moreover, initial damage caused by the earthquake may significantly alter the pressure performance of the containment under follow-up internal pressure. To compromise the dangers of beyond design-basis earthquake to the containment, an alternative of replacing the conventional concrete with fiber-reinforced concrete (FRC) to upgrade the seismic resistance capacity of the containment is attempted and thoroughly researched. In this study, the influence of various fiber types such as rigid fiber and mixed fiber is regarded to constitute fiber-reinforced PCCVs. The physical properties of traditional and fiber-reinforced PCCVs under earthquake ground motions are scientifically compared and identified by using traditional and proposed evaluation indices. The results indicate that both the traditional evaluation index (i.e. top displacement, stress, strain) and the proposed damage index are greatly reduced by the practice of fiber strengthening under earthquake ground motions.

Evaluation of Fire-Resistant Performance for Tunnel Lining Concrete with Heating Temperature-Time Curves (시간가열온도곡선에 따른 터널라이닝 콘크리트의 내화성능 평가)

  • Lee, Chan-Young;Shim, Jae-Won;Ahn, Tae-Song;Lim, Chae-Hyeok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.477-480
    • /
    • 2006
  • In this study, evaluation of fire-resistant performance for polypropylene fiber-mixed mortar was performed to establish specification for stability of tunnel structure against fire afterward. In the fire-resistant performance test with mix proportion of polypropylene fiber, cracks were observed for mortar under 0.15% of fiber content, but micro-cracks were remarkably reduced for mortar more than 0.2% of fiber content. From the results, we are concluded that optimal mix proportion of polypropylene fiber is $0.20{\sim}0.25%$.

  • PDF