• Title/Summary/Keyword: fiber evaluation

Search Result 1,694, Processing Time 0.039 seconds

Shear Capacity Determination of Steel Fiber Reinforced RC Columns (강섬유 보강 RC 기둥의 전단능력 산정)

  • 이현호;장극관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.891-896
    • /
    • 2001
  • As composite materials, the addition of steel fiber in concrete significantly improves the engineering properties of structural members, notably shear strength and ductility, In this study, shear capacity evaluation method according to steel fiber contents was proposed from the literature surveys and member tests. For this, previously proposed five shear strength equation were examined and evaluated by maximum shear strength and shear capacity ratio. From the parametric study and regression analysis, following conclusion can be made; the maximum shear strength of steel fiber reinforced column will be estimated by relative shear capacity ratio.

  • PDF

Evaluation of Fiber Dispersion of ECC Incorporated by Recycled Mineral Wastes (순환형 폐기물이 혼입된 ECC의 섬유 분산성 평가)

  • Kim, Yun-Yong;Park, Jun-Hyung;Hyun, Jung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.381-382
    • /
    • 2010
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. Thus, fiber dispersion of ECC incorporated by recycled mineral wastes was evaluated to more accurately predict uniaxial tension behavior.

  • PDF

Dyeing of Microfibrillar Poly(vinyl Alcohol) Fiber - Evaluation of Surface Area of Microfibrillar Fiber- (폴리비닐알코올 마이크로피브릴 섬유의 염색 -마이크로피브릴 섬유의 표면적 평가-)

  • 김한도;김재필;김삼수;류원석
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.368-370
    • /
    • 2001
  • 폴리비닐알코올(poly(vinyl alcohol) (PVA))은 구조적인 단량체인 비닐알코올의 호변 이성질화 때문에 직접 중합에 의해서는 얻을 수 없으며, 아세트산 비닐 (vinyl acetate (VAc))이나 피발산 비닐 (vinyl pivalate (VPi))같은 비닐에스테르 계열 단량체를 사용하여 중합과 비누화 반응을 거쳐 제조되고 비누화 반응에서 모든 측쇄기가 효과적으로 제거되는 히드록시기 함유 선형 결정성 고분자이다[1-4]. (중략)

  • PDF

Effects of Wheat Fiber, Oat Fiber, and Inulin on Sensory and Physico-chemical Properties of Chinese-style Sausages

  • Huang, S.C.;Tsai, Y.F.;Chen, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.875-880
    • /
    • 2011
  • This study introduces the addition of wheat fiber, oat fiber, and inulin to Chinese-style sausages, in amounts of 3.5% and 7%, respectively. Researchers used analysis of general composition and texture properties, and sensory evaluation to assess the influence of these three types of dietary fiber on the quality and palatability of Chinese-style sausages. Results showed that the type and amount of dietary fiber introduced did not significantly influence the general composition, color, and total plate count of sausages. However, the addition of wheat fiber and oat fiber significantly hardened the texture of Chinese-style sausages (p<0.05). A greater amount of dietary fiber added implied a harder texture. Added inulin did not influence the texture of Chinese-style sausages (p>0.05). Results of product assessment showed that, aside from sausages with 7% wheat fiber scoring less than 6 points (on a 9-point scale) in terms of overall acceptability, the other groups of Chinese-style sausages scored over 6 points. Judges preferred the sausage groups with 3.5% added oat and wheat fiber. This study demonstrates that adding fiber to Chinese-style sausages to increase the amount of dietary fiber is feasible.

Fiber Optic Interferometer Simulator (광섬유 간섭계 시뮬레이터)

  • Yang, Mun-Sang;Chong, Kyoung-Ho;Do, Jae-Chul;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.411-414
    • /
    • 2008
  • The study is about simulation of optical circuit for oneself performance evaluation of Fiber Optic Gyro(FOG) closed-loop controller board. The Fiber Optic Interferometer Simulator is used a digital signal processing for cosine response specificity output of fiber optic coil about input rate. Response specificity of the fiber optic coil is $Vo(t)=K3[1+\cos\{K1(Vm(t)-Vm(t-{\tau}))+K2\}]$. Also the Fiber Optic Interferometer Simulator is able to confirm a output value with K1, K2 and K3 input. The fiber Optic Interferometer Simulator is able to oneself performance evaluation without fiber optical circuit. Because, it is the very same cosine response specificity of real fiber optic coil about input rate.

  • PDF

Evaluation of Impact Resistance of Steel Fiber and Organic Fiber Reinforced Concrete and Mortar

  • Kim, Gyu-Yong;Hwang, Heon-Kyu;Nam, Jeong-Soo;Kim, Hong-Seop;Park, Jong-Ho;Kim, Jeong-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.377-385
    • /
    • 2012
  • In this study, the Impact resistance of steel fiber and organic fiber reinforced concrete and mortar was evaluated and the improvement in toughness resulting from an increase in compressive strength and mixing fiber for impact resistance on performance was examined. The types of fiber were steel fiber, PP and PVA, and these were mixed in at 0.1, 0.5 and 1.0 vol.%, respectively. Impact resistance is evaluated with an apparatus for testing impact resistance performance by high-speed projectile crash by gas-pressure. For the experimental conditions, Specimen size was $100{\times}100{\times}20$, 30mm ($width{\times}height{\times}thickness$). Projectile diameter was 7 and 10 mm and impact speed is 350m/s. After impact test, destruction grade, penetration depth, spalling thickness and crater area were evaluated. Through this evaluation, it was found that as compressive strength is increased, penetration is suppressed. In addition, as the mixing ratio of fiber is increased, the spalling thickness and crater area are suppressed. Organic fibers have lower density than the steel fiber, and population number per unit area is bigger. As a result, the improvement of impact resistance is more significant thanks to dispersion and degraded attachment performance.

Quaility Evaluation of Jellies Prepared with Refined Dietary Fiber from Ascidian (Halocynthia roretzi) Tunic (우렁쉥이 껍질로부터 정제된 섬유소 첨가 젤리의 품질평가)

  • 변명우;안현주;육홍선;이주운;김덕진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.64-67
    • /
    • 2000
  • Jellies enhancing physiological functions were prepared with using 5 and 10% dietary fiber isolated from ascidian (Halocynthia roretzi) tunic collected from recycled seafood waste. The texture development of the samples was examined with two-bite compression test and analyzed using five sorts ofrheological parameters with texture profile analysis as follows; hardness, adhesiveness, springiness, cohesiveness and gumminess. All the rheological parameters decreased in the fiber enhanced jellies. However, the springiness and cohesiveness increased slightly in the fiber enhanced jellis. Hunter L' and d' values increased in the fiber enhanced jellies and accordingly the color was light yellow. a' value showed green with the addition of fiber. As a result of sensory evaluations, the color and overall acceptability of 10% fiber enhanced jelly were significantly different at p<0.05. The 10% fiber enhanced jelly was noted as having high sensory scores and peferable acceptability.

  • PDF

Evaluation of the Properties of Nylon Fiber Reinforced Concrete and the Performance in Plastic Shrinkage Cracking Reduction (나일론 섬유보강 콘크리트의 물리적 특성 및 모르타르 소성수축균열 제어성능 평가)

  • Kim Kwang-Ryeon;Kwon Yong Joo;Baek In Sang;Kim Yong Tae;Kim Byung Gi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • Recently, various concrete reinforcing fibers have been used to reduce the plastic shrinkage cracking which occurs before the concrete hardens. In this study, the physical properties of nylon fiber reinforced concrete such as slump, air content, compressive strength and tensile strength were investigated. In addition, the performance of nylon fiber in the plastic shrinkage cracking reduction of mortar has been estimated in comparison with polypropylene fiber and cellulose fiber. Nylon fiber showed considerable advantages in terms of the workability of concrete and the plastic shrinkage cracking reduction of mortar compared with polypropylene fiber and cellulose fiber.

  • PDF

Nondestructive Evaluation of Fiber Waviness in Thick Composites by Ultrasonics (초음파를 이용한 두꺼운 복합재료의 보강섬유 굴곡 평가)

  • 장필성;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.258-263
    • /
    • 1999
  • In this study, the numerical and experimental investigations were conducted to understand ultrasonic wave propagation and to evaluate the degree of fiber waviness in thick composites nondestructively. The path, energy and traveling time of insonified wave were predicted by adopting the ray and plane wave theories. In the analysis, the composites were assumed to have continuous fiber with sinusoidal waviness in a matrix and were modeled as stacks of infinitesimally short length off-axis elements with varying fiber orientation along the length direction. From the experiments on the specially fabricated thick composite specimens with various degrees of uniform fiber waviness, the energy distributions of received wave were obtain for the various positions of transmitter. It was observed that the energy of wave was converged to the adjacent peaks of fiber waviness. The location where maximum energy of wave was detected from the experiments showed good agreement with the location obtained from theoretical predictions. Finally, the test procedure was Proposed to evaluate fiber waviness in thick composites by considering the energy of wave and relative distance between transmitter and receiver.

  • PDF