• 제목/요약/키워드: fiber dimension

Search Result 109, Processing Time 0.024 seconds

Evaluation of Carbon Fiber distribution in Unidirectional CF/Al Composites by Two-Dimensional Spatial Distribution Method

  • Lee, Moonhee;Kim, Sungwon;Lee, Jongho;Hwang, SeungKuk;Lee, Sangpill;Sugio, Kenjiro;Sasaki, Gen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.29-36
    • /
    • 2018
  • Low pressure casting process for unidirectional carbon fiber reinforced aluminum (UD-CF/Al) composites which is an infiltration route of molten Al into porous UD-CF preform has been a cost-effective way to obtain metal matrix composites (MMCs) but, easy to cause non-uniform fiber distribution as CF clustering. Such clustered CFs have been a problem to decrease the density and thermal conductivity (TC) of composites, due to the existence of pores in the clustered area. To obtain high thermal performance composites for heat-sink application, the relationship between fiber distribution and porosity has to be clearly investigated. In this study, the CF distribution was evaluated with quantification approach by using two-dimensional spatial distribution method as local number 2-dimension (LN2D) analysis. Note that the CFs distribution in composites sensitively changed by sizes of Cu bridging particles between the CFs added in the UD-CF preform fabrication stage, and influenced on only $LN2D_{var}$ values.

A Study on Evaluation of Thermal Conductivity for Carbon -Fiber-Reinforced-Plastics (탄소섬유강화 복합재의 열전도율 평가에 관한 연구)

  • Im, Jae-Gyu;Song, Jun-Hui;Choe, Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.553-559
    • /
    • 2002
  • Carbon-fiber which has very small radial dimension makes us difficult to measure it's properties. So in this paper, we suggest a simple method to measure the thermal conductivity of a carbon-fiber's and carbon-fiber-reinforced-plastics(CFRP) laminates. The thermal conductivity of CFRP laminates was measured experimentally at the same time analytically. The experimental model is based on the one-dimensional analysis of fin sample because CFRP laminates has a thin geometric configuration. The analytical model to measure the thermal conductivity of carbon-fiber is expressed by use of mean-field model which is based on Eshelby's elliptical inclusion problem. Therefore the thermal conductivity of angle-ply laminates can be computed by use of effective longitudinal and transverse thermal conductivities of unidirectional composite of the constituents.

AN OPTICAL FIBER FEED LITTROW-MOUNTED SPECTROMETER (광섬유 피드 리트로마운트형 분광계)

  • Bae, J.H.;Song, J.W.;Yoon, T.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.87-93
    • /
    • 2012
  • A low-dispersion fiber feed Littrow-mounted grating spectrometer for education was designed and fabricated. The dispersion element is a reflective type blazed grating Edmundoptics NT 46-075 (spatial frequency 600 lines/mm, dimension $30mm{\times}30mm$, blazed angle 8.6 degree). The optical fiber coupler module for optical guiding from telescope to spectrometer is composed of a multi-mode FC connector - FC connector optical fiber patch cord (core/cladding diameter $50{\mu}m/125{\mu}m$) and two 1.25" throw-tube couplers. The lens for collimating and imaging is a general purpose focal length 50 mm camera lens (f/1.8). The device for optical path control is a rectangular prism (size $25mm{\times}25mm$). The imaging camera sensor is a Meade DSI Pro 2 CCD sensor (black and white, $752{\times}582$ pixels and pixel size $8.3{\mu}m{\times}8.6{\mu}m$). Softwares for data logging and analysis consist of Meade Autostar Suite, NIH imagej and Vernier Logger Pro 3. The wavelength coverage range of the spectrometer is 205 nm at central wavelength 550 nm. The wavelength resolution is 1.7 nm.

A STUDY ON THE FRACTURE STRENGTH OF TEETH RESTORED WITH A CARBON FIBER POST UNDER CYCLIC LOADING (반복하중하에서의 carbon fiber post의 파절강도에 관한 연구)

  • Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.640-649
    • /
    • 2000
  • In the restoration of endodontically treated teeth, carbon fiber post was recently introduced. The purpose of this in vitro study was to investigate the fracture strength of teeth restored with a pre-fabricated carbon fiber post in comparison with teeth restored with a prefabricated titanium post & custom cast gold post after cyclic loading in the different environment. A total of 30 recently extracted human central incisors of similar dimension with crowns removed were used. All teeth were placed into acrylic blocks and every steps for post and core fabrication were made accord-ing to manufacture's instruction. The post length and core dimensions were standardizd. All teeth were divided into 6 groups: 1) carbon fiber post / atmosphere, 2) titanium post / atmosphere, 3) gold post / atmosphere, 4) carbon fiber post / wet, 5) titanium post / wet, 6) gold post / wet. Carbon fiber post and titanium post were cemented in place using resin cement and cores were fabricated with Ti-Core. Custom cast gold post was made from Duralay pattern resin and cemented using resin cement, too. All specimens were thermocycled 10,000 times. After 50,000 cyclic loading, failure strength was measured using Instron testing machine. Kruskal-Wallis test followed by Mann-Whitney test was used to compare the mean fracture strength. Results were as follows : 1. All specimens showed lower fracture strength in wet environment after cyclic loading than in atmosphere condition, but did not reveal a significant difference. 2. There was no significant difference between carbon fiber post specimen and titanium post specimen in the same environment. 3. Gold cast post specimen showed significant different greater fracture strength than those of others in the same environment. 4. Carbon fiber post specimen showed no root fracture.

  • PDF

Multi-Dimension Scaling as an exploratory tool in the analysis of an immersed membrane bioreactor

  • Bick, A.;Yang, F.;Shandalov, S.;Raveh, A.;Oron, G.
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.105-119
    • /
    • 2011
  • This study presents the tests of an Immersed Membrane BioReactor (IMBR) equipped with a draft tube and focuses on the influence of hydrodynamic conditions on membrane fouling in a pilot-scale using a hollow fiber membrane module of ZW-10 under ambient conditions. In this system, the cross-flow velocities across the membrane surface were induced by a cylindrical draft-tube. The relationship between cross-flow velocity and aeration strength and the influence of the cross-flow on fouling rate (under various hydrodynamic conditions) were investigated using Multi-Dimension Scaling (MDS) analysis. MDS technique is especially suitable for samples with many variables and has relatively few observations, as the data about Membrane Bio-Reactor (MBR) often is. Observations and variables are analyzed simultaneously. According to the results, a specialized form of MDS, CoPlot enables presentation of the results in a two dimensional space and when plotting variables ratio (output/input) rather than original data the efficient units can be visualized clearly. The results indicate that: (i) aeration plays an important role in IMBR performance; (ii) implementing the MDS approach with reference to the variables ratio is consequently useful to characterize performance changes for data classification.

Sound Pressure Sensitivity Variation of the Hollow Cylinder Type Sagnac Fiber Optic Sensor According to the Mandrel Install Direction and Its Material (Sagnac형 광섬유 센서를 이용한 중공 원통형 맨드릴의 재료 및 설치 방향에 따른 음압 감지 변화 연구)

  • Lee, Jong-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.626-633
    • /
    • 2012
  • In this paper, sound pressure sensitivity of the fiber optic acoustic sensor according to sensor direction and mandrel material were investigated experimentally. Three different directions were selected as stand, lay, and hole. Hollow cylinder type mandrel dimension is 30 mm in outer diameter, 45 mm in length, and 2 mm in thickness, and about 50 m optical fibers were wounded on the surface of the mandrel. Non-directional sound speaker was used as a sound source. Sagnac interferometer and single mode fiber, a laser with 1,550 nm in wavelength, $2{\times}2$ coupler were used. Based on the experimental results, lay direction's sensitivity is the highest in the frequency range of 2 kHz~4 kHz. 'PTFE+carbon' material is more sensitive than PTFE in the frequency range of 5 kHz~20 kHz. Sound pressure detection sensitivity depends on the mandrel direction and material under certain frequency.

A Study on the Filling Imbalance of Polyamide Molding by Taguchi Method (다구찌 방법을 이용한 폴리아미드 성형품의 충전 불균형에 관한 연구)

  • Han, Kyu-Taek;Jeong, Yeong-Deug;Goo, Yang;Kim, Byung-Tak;Kim, Hyung-Je;Han, Seong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.95-100
    • /
    • 2004
  • Plastics is used to produce precise parts with an inclusion of a reinforcement material such as glass fiber or carbon fiber to improve the dimension accuracy. The plastic goods can be produced with inaccurate dimensions, low mechanical strength, or residual stress due to the over packing of cavity inside, if the filling balance of melt resin is not accomplished. To overcome this problem, it is necessary to design the runner system with the geometrical balance at the mold design stage. However, even if the balanced runner system is achieved, a severe filling imbalance is observed practically in a multi-cavity mold. In this study, experiments were performed with Taguchi method to achieve the filling balance in multi-cavity mold with a symmetric runner system, by the use of pure PA and PA with glass fiber 33%. The experimental results were investigated to understand the effect of related molding factors on the filling imbalance for two resins.

  • PDF

Hand Assessment for Women's Spring-Fall Dress Fabrics (Part 2) -Effects of Fabric Type and Seam on Hand- (이성용 춘추복지의 태에 관한 연구(제2보) -직물의 특성과 솔기가 태에 미치는 영향-)

  • 홍경희;김재숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.4
    • /
    • pp.452-459
    • /
    • 1994
  • Fabric hand was assessed for 14 women's spring-fall dress fabrics based on the subjective hand evaluation scale developed in the part 1 of this study. The effects of fabric type, seam and dress style on the subjective hand evaluation of 470 Korean consumers (205 textile experts and 265 non-experts) were investigated. Mechanical properties obtained from KES-FB system were compared with the each dimension of subjective hand expression. The type of fiber and construction were considered to be important factors in affecting hand assessment of Korean consumers, however, the presence and type of seam were not considered to be important. There were certain characteristics of subjective hand attributes for each dress style. Surface properties of fabrics, even though it is not strictly mechanical properties, appeared to be the most effective dimension in the developement of new products which appeal to Korean conssumers.

  • PDF

Absolute position measurement by lateral shearing interferometry of point-diffracted spherical waves (점회절 구면파의 전단 간섭계를 이용한 절대위치 측정)

  • Chu J.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.25-26
    • /
    • 2006
  • The method measuring the absolute position of a point diffraction source emitting a spherical wavefront in three-dimension is proposed. Two-dimensional interference of spherical wavefronts is used to overcome ambiguity of phase order. The spherical wavefront is explicated by Taylor series expansion, from which a radius of curvature of a spherical wavefront and its center position in three-dimension are obtainable. The spherical wavefront is reconstructed by a modified lateral shearing interferometer, which uses single-mode fiber as a point diffraction source.

  • PDF

Fiber Optic Sensor for the Detection of Abnormal Structural Signals from Various Constructions (구조물 이상탐지용 광섬유 센서)

  • Kwon, Il-Bum;Lee, Youn-Jae;SeoMoon, Ung;Jo, Jae-Heung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.133-135
    • /
    • 2006
  • We propose and fabricate a novel fiber optic sensor for the detection of abnormal structural signals from various constructions. It's advantages are highly sensitive. small in dimension and electro-magnetic immune. Since this sensor was simply constructed with a single-mode fiber at infra-red wavelength and a laser-diode with the wavelength of 625 nm, the modes in the end of the optical fiber were not show as Gaussian distributed. So, we used the change of the mode distribution to get the sensor output by the external abnormal effect of structures. We investigated the resonance by performing the bending test of an aluminum beam attached with the fiber sensor. In the test, we could obtained a feasible signal to sense the abnormal condition of structures.